【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=4x,且f(0)=1.
(1)求二次函數(shù)f(x)的解析式.
(2)求函數(shù)g(x)=( )f(x)的單調(diào)增區(qū)間和值域.
【答案】
(1)解:設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0).
∵f(0)=1,∴c=1.把f(x)的表達(dá)式代入f(x+1)﹣f(x)=4x,有
a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=4x.
∴2ax+a+b=4x.∴a=2,b=﹣2.
∴f(x)=2x2﹣2x+1
(2)解:g(x)=( )f(x)= ,
令t=2x2﹣2x+1,則t=2x2﹣2x+1=2(x﹣ )2+
此時y=( )t為減函數(shù),
當(dāng)x≥ 時,函數(shù)t=2x2﹣2x+1為增函數(shù),此時g(x)為減函數(shù),即函數(shù)單調(diào)遞減區(qū)間為(﹣∞, ],
當(dāng)x≤ 時,函數(shù)t=2x2﹣2x+1為減函數(shù),此時g(x)為增函數(shù),即函數(shù)單調(diào)遞增區(qū)間為[ ,+∞),
∵t=2x2﹣2x+1=2(x﹣ )2+ ≥ ,
∴0<( )t≤=( ) = ,
即函數(shù)的值域為(0, ]
【解析】(1)利用待定系數(shù)法即可求二次函數(shù)f(x)的解析式.(2)利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性的關(guān)系結(jié)合一元二次函數(shù)和指數(shù)函數(shù)的性質(zhì)進(jìn)行求解即可.
【考點精析】利用二次函數(shù)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名同學(xué)參加定點投籃測試,已知兩人投中的概率分別是和,假設(shè)兩人投籃結(jié)果相互沒有影響,每人各次投球是否投中也沒有影響.
(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達(dá)標(biāo),求甲達(dá)標(biāo)的概率;
(Ⅱ)若每人有4次投球機會,如果連續(xù)兩次投中,則記為達(dá)標(biāo).達(dá)標(biāo)或能斷定不達(dá)標(biāo),則終止投籃.記乙本次測試投球的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx,g(x)=x2 . 其中x∈R.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)﹣1對任意x>0恒成立,求實數(shù)a的值;
(3)當(dāng)a<0時,對于函數(shù)h(x)=f(x)﹣g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為kAB , 若|kAB|≥1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是(只填正確說法序號)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},則A∩B={(0,﹣1),(1,0)};
② 是函數(shù)解析式;
③ 是非奇非偶函數(shù);
④設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),則f(x1+x2)=c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機觀測生產(chǎn)某種零件的某工廠25名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是滿足f(x)+f(﹣x)=0,在(﹣∞,0)上 ,且f(5)=0,則使f(x)<0的x取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0, )時,f(x)=sinπx,f( )=0,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( )
A.9
B.7
C.5
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線C的中心在原點,右焦點為 ,漸近線方程為 .
(1)求雙曲線C的方程;
(2)設(shè)直線l:y=kx+1與雙曲線C交于A、B兩點,問:當(dāng)k為何值時,以AB為直徑的圓過原點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com