畫出函數(shù)f(x)=|x-1|+3的圖象.
分析:利用分段函數(shù),將函數(shù)的解析式進(jìn)行化簡(jiǎn)即可.
解答:解:當(dāng)x≥1時(shí),f(x)=|x-1|+3=x-1+3=x+2.
當(dāng)x<1時(shí),f(x)=|x-1|+3=-(x-1)+3=4-x.
所以f(x)=
x+2,x≥1
4-x,x<1
,所以對(duì)應(yīng)的函數(shù)圖象為:
點(diǎn)評(píng):本題主要考查函數(shù)圖象的做法,利用分段函數(shù)將函數(shù)先進(jìn)行化簡(jiǎn),然后再進(jìn)行作圖即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=sin2x+cos2x.
(Ⅰ)當(dāng)x∈(0,
11π
24
)
時(shí),求f(x)的取值范圍;
(Ⅱ)畫出函數(shù)f(x)在[0,
π
2
]
內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)為P(3,4)且過(guò)點(diǎn)A(2,2)的拋物線的一部分.
(1)在圖中的直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(2)寫出函數(shù)f(x)的值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-
1x
-1
(1)畫出函數(shù)f(x)的大致圖象,并寫出函數(shù)的定義域,值域.
(2)用定義證明函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知f(x)=
x2+2x,x≥0
2x+1,x<0

(1)已知log
 
3
2
∈(1,2),分別求f(2),f(log
 
3
2
-2)的值;
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間(不要求證明);
(3)解不等式f(x)>
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案