【題目】已知函數(shù)在區(qū)間上有且僅有2個(gè)零點(diǎn),對(duì)于下列4個(gè)結(jié)論:①在區(qū)間上存在,滿足;②在區(qū)間有且僅有1個(gè)最大值點(diǎn);③在區(qū)間上單調(diào)遞增;④的取值范圍是,其中所有正確結(jié)論的編號(hào)是( )
A.①③B.①③④C.②③D.①④
【答案】B
【解析】
對(duì)①,,則為最大值減最小值,需要找到在上是否存在最大值和最小值;對(duì)②,對(duì)應(yīng)的值有可能在上;對(duì)④,由在區(qū)間上有且僅有2個(gè)根,得,求出的范圍;對(duì)③,由的范圍,確定的范圍,進(jìn)而確定的單調(diào)性.
,
,
令,則,
由題意在上只能有兩解和,
,(*)
因?yàn)?/span>上必有,
故在上存在滿足,①成立;
開(kāi)對(duì)應(yīng)的(顯然在上)一定是最大值點(diǎn),
因對(duì)應(yīng)的值有可能在上,故②結(jié)論錯(cuò)誤;
解(*)得,所以④成立;
當(dāng)時(shí),,
由于,
故,
此時(shí)是增函數(shù),從而在上單調(diào)遞增. 所以③成立
綜上,①③④成立,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)在直線上且滿足.若,則弦中點(diǎn)的橫坐標(biāo)的取值范圍為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若直線是曲線的一條切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若函數(shù)在上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),整理如下:
甲公司員工:410,390,330,360,320,400,330,340,370,350
乙公司員工:360,420,370,360,420,340,440,370,360,420
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根據(jù)題中數(shù)據(jù)寫(xiě)出甲公司員工在這10天投遞的快件個(gè)數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為 (單位:元),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體的棱長(zhǎng)滿足,,現(xiàn)將四面體放入一個(gè)主視圖為等邊三角形的圓錐中,使得四面體可以在圓錐中任意轉(zhuǎn)動(dòng),則圓錐側(cè)面積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),總有,求的最小值;
(2)對(duì)于中任意恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,為正三角形,平面平面,E為的中點(diǎn),,,.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點(diǎn)M,使得平面?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“互聯(lián)網(wǎng)”是“智慧城市”的重要內(nèi)士,市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費(fèi).為了解免費(fèi)在市的使用情況,調(diào)査機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)査的網(wǎng)友中抽取了人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費(fèi)WiFi | 偶爾或不用免費(fèi)WiFi | 合計(jì) | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為市使用免費(fèi)的情況與年齡有關(guān);
(2)將頻率視為概率,現(xiàn)從該市歲以上的市民中用隨機(jī)抽樣的方法每次抽取人,共抽取次.記被抽取的人中“偶爾或不用免費(fèi)”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,數(shù)學(xué)期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),已知函數(shù)在x=1處的切線方程為.
(1)求a的值;
(2)求證:當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com