分析 由sinA=sinC,利用正弦定理可得a=c,結(jié)合B=30°,可求C=A=75°,由正弦定理,可得a,c的值,進(jìn)而利用三角形面積公式即可計(jì)算得解.
解答 解:∵在△ABC中,由sinA=sinC,可得a=c,
∴△ABC是等腰三角形,
又∵B=30°,
∴可得:C=A=75°,
∴由正弦定理,可得a=$\frac{bsinA}{sinB}$=$\frac{2×sin75°}{\frac{1}{2}}$=$\sqrt{2}+$$\sqrt{6}$=c,
∴△ABC的面積S△ABC=$\frac{1}{2}$ac•sinB=$\frac{1}{2}$×($\sqrt{2}+$$\sqrt{6}$)×($\sqrt{2}+$$\sqrt{6}$)×$\frac{1}{2}$=2+$\sqrt{3}$.
故答案為:2+$\sqrt{3}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦定理和三角形面積公式,求得a,c,A的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com