8.如圖,OA、OB是兩條公路(近似看成兩條直線),$∠AOB=\frac{π}{3}$,在∠AOB內(nèi)有一紀念塔P(大小忽略不計),已知P到直線OA、OB的距離分別為PD、PE,PD=6千米,PE=12千米.現(xiàn)經(jīng)過紀念塔P修建一條直線型小路,與兩條公路OA、OB分別交于點M、N.
(1)求紀念塔P到兩條公路交點O處的距離;
(2)若紀念塔P為小路MN的中點,求小路MN的長.

分析 (1)設∠POA=α,分別在△OPD和△OPE中用α表示出OP,解方程即可得出α,從而求出OP的長;
(2)設∠PMO=θ,分別表示出PM,PN,解方程得出θ,從而得出MN的長.

解答 解:(1)設∠POA=α,則$∠POB=\frac{π}{3}-α$,
∵PD=6,PE=12,
∴$OP=\frac{6}{sinα}=\frac{12}{{sin(\frac{π}{3}-α)}}$,
∴$2sinα=sin(\frac{π}{3}-α)$,化簡得$tanα=\frac{{\sqrt{3}}}{5}$,
又sin2α+cos2α=1,∴$sinα=\frac{{\sqrt{3}}}{{2\sqrt{7}}}$,
∴$OP=\frac{6}{sinα}=4\sqrt{21}$.
∴紀念塔P到兩條公路交點O處的距離為4$\sqrt{21}$千米.
(2)設∠PMO=θ,則∠PNO=$\frac{2π}{3}$-θ,
∵P為MN的中點,即PM=PN,
∴$\frac{6}{sinθ}=\frac{12}{{sin(\frac{2π}{3}-θ)}}$,
即$sin(\frac{2π}{3}-θ)=2sinθ$,解得$θ=\frac{π}{6}$,
∴$MN=2PM=\frac{12}{{sin\frac{π}{6}}}=24$.
∴小路MN的長為24千米.

點評 本題考查了解三角形的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=-4x3+kx,對任意的x∈[-1,1],總有f(x)≤1,則實數(shù)k的取值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知復數(shù)z=$\frac{2-i}{1+i}$,其中i是虛數(shù)單位,則z的模是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設數(shù)列{an}的前n項和為Sn,且an=2-2Sn,數(shù)列{bn}為等差數(shù)列,且b5=14,b7=20.
(1)求數(shù)列{an}的通項公式;
(2)若cn=an•bn,n∈N*,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知正項等比數(shù)列{an},且a1a5+2a3a5+a3a7=25,則a3+a5=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某校開設10門課程供學生選修,其中A,B,C三門由于上課時間相同,至多選一門,學校規(guī)定每位學生選修三門,則每位學生不同的選修方案種數(shù)是( 。
A.70B.98C.108D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.環(huán)境監(jiān)測中心監(jiān)測我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當天空氣質(zhì)量優(yōu)良.
 天數(shù) 134 7 810 
 空氣質(zhì)量指數(shù) 7.18.3  7.3 9.5 8.6 7.7 8.7 8.88.7  9.1
 天數(shù) 1112 13 14 1516 17 18 19 20 
 空氣質(zhì)量指數(shù) 7.4 8.5 9.7 8.4 9.6 7.6 9.4 8.9 8.3 9.3
(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知直線l1:x+2y-4=0,l2:2x+my-m=0(m∈R),且l1與l2平行,則m=4,l1與l2之間的距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判斷直線y=f(x)能否與曲線y=g(x)相切,并說明理由;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個整數(shù)解,求a的取值范圍.

查看答案和解析>>

同步練習冊答案