已知n為正偶數(shù),用數(shù)學(xué)歸納法證明 時,若已假設(shè)為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證( )時等式成立 ( )
A. B. C. D.
B
【解析】
試題分析:首先分析題目因為n為正偶數(shù),用數(shù)學(xué)歸納法證明的時候,若已假設(shè)n=k(k≥2,k為偶數(shù))時命題為真時,因為n取偶數(shù),則n=k+1代入無意義,故還需要證明n=k+2成立.
若已假設(shè)n=k(k≥2,k為偶數(shù))時命題為真,因為n只能取偶數(shù),所以還需要證明n=k+2成立.故選B.
考點:數(shù)學(xué)歸納法
點評:此題主要考查數(shù)學(xué)歸納法的概念問題,對學(xué)生的理解概念并靈活應(yīng)用的能力有一定的要求,屬于基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
A、n=k+1時等式成立 |
B、n=k+2時等式成立 |
C、n=2k+2時等式成立 |
D、n=2(k+2)時等式成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
n+4 |
1 |
2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題
已知n為正偶數(shù),用數(shù)學(xué)歸納法證明
時,
若已假設(shè)為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證
A.時等式成立 B.時等式成立
C.時等式成立 D.時等式成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com