19.已知復(fù)數(shù)z=$\frac{2-{i}^{2017}}{1+i}$,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用虛數(shù)單位i得性質(zhì)及復(fù)數(shù)代數(shù)形式的乘除運算化簡求得z,進一步求出$\overline{z}$得答案.

解答 解:∵z=$\frac{2-{i}^{2017}}{1+i}$=$\frac{2-({i}^{4})^{504}•i}{1+i}=\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}$=$\frac{1-3i}{2}$=$\frac{1}{2}-\frac{3}{2}i$,
∴$\overline{z}=\frac{1}{2}+\frac{3}{2}i$,
∴z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為($\frac{1}{2},\frac{3}{2}$),位于第一象限.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一次數(shù)學(xué)考試后,某老師從自己所帶的兩個班級中各抽取6人,記錄他們的考試成績,得到如圖所示的莖葉圖.已知甲班6名同學(xué)成績的平均數(shù)為82,乙班6名同學(xué)成績的中位數(shù)為77,則x-y=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市在對高三學(xué)生的4月理科數(shù)學(xué)調(diào)研測試的數(shù)據(jù)統(tǒng)計顯示,全市10000名學(xué)生的成績服從正態(tài)分布X~N(110,144),現(xiàn)從甲校100分以上的200份試卷中用系統(tǒng)抽樣的方法抽取了20份試卷來分析,統(tǒng)計如下:
試卷編號 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
試卷得分109118112114126128127124126120
試卷編號 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20
試卷得分135138135137135139142144148150
(注:表中試卷編號n1<n2<28<n4<n5<…<n20

(1)列出表中試卷得分為126分的試卷編號(寫出具體數(shù)據(jù));
(2)該市又從乙校中也用系統(tǒng)抽樣的方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖),試通過莖葉圖比較兩校學(xué)生成績的平均分及分散程度(均不要求計算出具體值,給出結(jié)論即可);
(3)在第(2)問的前提下,從甲乙兩校這40名學(xué)生中,從成績在140分以上(含140分)的學(xué)生中任意抽取3人,該3人在全市前15名的人數(shù)記為ξ,求ξ的分布列和期望.
(附:若隨機變量X服從正態(tài)分布N(μ,σ2),則P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列判斷正確的是( 。
A.若事件A與事件B互斥,則事件A與事件B對立
B.函數(shù)y=$\sqrt{{x}^{2}+9}+\frac{1}{\sqrt{{x}^{2}+9}}$(x∈R)的最小值為2
C.若直線(m+1)x+my-2=0與直線mx-2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義在R上的偶函數(shù)f(x)滿足f(1-x)=f(1+x),且當(dāng)x∈[0,1]時,f(x)=$\sqrt{2x-{x}^{2}}$.則直線x-4y+2=0與曲線y=f(x)的交點個數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={x|x>2},N={x|1<x<3},則N∩∁RM=( 。
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某學(xué)校高三年級有兩個文科班,三個理科班,現(xiàn)每個班指定1人,對各班的衛(wèi)生進行檢  查.若每班只安排一人檢查,且文科班學(xué)生不檢查文科班,理科班學(xué)生不檢查自己所在的班,則不同安排方法的種數(shù)是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(1,-2)和($\frac{\sqrt{3}}{3}$,0)在直線l:ax-y-1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是( 。
A.($\frac{π}{4}$,$\frac{π}{3}$)B.($\frac{π}{3}$,$\frac{2π}{3}$)C.($\frac{2π}{3}$,$\frac{5π}{6}$)D.(0,$\frac{π}{3}$)∪($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)實數(shù)x,y滿足(x+3)2+(y-4)2=4,則$\sqrt{{x}^{2}+{y}^{2}}$的最大值是7.

查看答案和解析>>

同步練習(xí)冊答案