已知在時有極大值6,在時有極小值,求的值;并求在區(qū)間[-3,3]上的最大值和最小值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間[0,3]上的最大值與最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處取得極值.
(1)求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
(3)證明:對任意的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率≤恒成立,求實數(shù)的取值范圍;(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數(shù),求證;
(2)對于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為偶函數(shù),曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數(shù)的取值范圍;
(2)若當時函數(shù)取得極值,確定的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com