(本小題滿分10分)選修4—1:幾何證明選講 如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于D。
(Ⅰ)證明:DB=DC;
(Ⅱ)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑。
(1)連接DE,交BC為G,由弦切角定理得,,,又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013121123414658274880/SYS201312112342416759185157_DA.files/image003.png">,所以DE為直徑,由勾股頂?shù)椎肈B=DC.
(2)由(1),,,故是的中垂線,故,圓心為O,連接BO,則,,所以,故外接圓半徑為.
【解析】(1)利用弦切角定理進(jìn)行求解;(2)利用(1)中的結(jié)論配合角度的計(jì)算可以得到答案.
【考點(diǎn)定位】本題考查幾何證明中的定理運(yùn)用,考查學(xué)生的數(shù)形結(jié)合的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com