【題目】如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.
(1)求證:直線MN⊥平面ACB1;
(2)求點C1到平面B1MC的距離.
【答案】(1)證明見解析.(2)
【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;
(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解
(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;
∵M是AB的中點.
所以:MN∥BC1;
∵A1A⊥平面ABC,AC平面ABC,
∴A1A⊥AC,
在三棱柱ABC﹣A1B1C1中,AA1∥CC,
∴AC⊥CC1,
∵∠ACB=90°,BC∩CC1=C,BC平面BB1C1C,CC1平面BB1C1C,
∴AC⊥平面BB1C1C,BC平面BB1C1C,
∴AC⊥BC1;又MN∥BC1
∴AC⊥MN,
∵CB=C1C=1,
∴四邊形BB1C1C正方形,
∴BC1⊥B1C,∴MN⊥B1C,
而AC∩B1C=C,且AC平面ACB1,CB1平面ACB1,
∴MN⊥平面ACB1,
(2)作交于點,設C1到平面B1CM的距離為h,
因為MP,
所以MP,
因為CM,B1C;
B1M,所以
所以:CMB1M.
因為,所以,解得
所以點,到平面的距離為
科目:高中數(shù)學 來源: 題型:
【題目】某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,,給出以下四個命題:(1)是偶函數(shù);(2)是偶函數(shù);(3)的最小值為;(4)有兩個零點;其中真命題的是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.若:,,則:,.
B.命題“已知,若,則或”是真命題.
C.“在上恒成立”“在上恒成立”.
D.函數(shù)的最小值為2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了響應綠色出行,某市推出了新能源分時租賃汽車,并對該市市民使用新能源租賃汽車的態(tài)度進行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1:
表1
愿意使用新能源租賃汽車 | 不愿意使用新能源租賃汽車 | 總計 | |
男性 | 100 | 300 | |
女性 | 400 | ||
總計 | 400 |
其中一款新能源分時租賃汽車的每次租車費用由行駛里程和用車時間兩部分構(gòu)成:行駛里程按1元/公里計費;用車時間不超過30分鐘時,按0.15元/分鐘計費;超過30分鐘時,超出部分按0.20元/分鐘計費.已知張先生從家到上班地點15公里,每天上班租用該款汽車一次,每次的用車時間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時間(分鐘)是一個隨機變量.張先生記錄了100次的上班用車時間,并統(tǒng)計出在不同時間段內(nèi)的頻數(shù)如下表2:
表2
時間(分鐘) | (20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 20 | 40 | 30 | 10 |
(1)請補填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認為該市市民對新能源租賃汽車的使用態(tài)度與性別有關(guān);
(2)根據(jù)表2中的數(shù)據(jù),將各時間段發(fā)生的頻率視為概率,以各時間段的區(qū)間中點值代表該時間段的取值,試估計張先生租用一次該款汽車上班的平均用車時間;
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com