A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 連結(jié)A1C,交AC1于點(diǎn)E,取BC的中點(diǎn)D,連結(jié)AD、DE,則∠AED(或其補(bǔ)角)就是異面直線A1B與AC1所成的角,由此能求出異面直線A1B與AC1所成角的余弦值.
解答 解:連結(jié)A1C,交AC1于點(diǎn)E,取BC的中點(diǎn)D,連結(jié)AD、DE,
∵四邊形AA1C1C是平行四邊形,∴E是A1C的中點(diǎn)
∵D是BC的中點(diǎn),∴DE是△A1BC的中位線,可得DE$\underset{∥}{=}$$\frac{1}{2}$A1B,
因此,∠AED(或其補(bǔ)角)就是異面直線A1B與AC1所成的角.
設(shè)AB=AC=AA1=2,
∵∠A1AB=60°,∴△A1AB是等邊三角形,可得A1B=2,
得DE=$\frac{1}{2}$A1B=1.
同理,等邊△A1AC中,中線AE=$\frac{\sqrt{3}}{2}$A1A=$\sqrt{3}$,
又∵∠BAC=90°,AB=AC=2,D為BC中點(diǎn),
∴AD=$\frac{1}{2}$BC=$\frac{1}{2}$$\sqrt{A{B}^{2}+A{C}^{2}}$=$\sqrt{2}$,
由此可得△ADE中,cos∠AED=$\frac{A{E}^{2}+D{E}^{2}-A{D}^{2}}{2AE•ED}$=$\frac{3+1-2}{2×\sqrt{3}×1}$=$\frac{\sqrt{3}}{3}$.
即異面直線A1B與AC1所成角的余弦值為$\frac{\sqrt{3}}{3}$.
故選:C.
點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,3} | C. | {-1} | D. | {-1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x>1,則x2>1”的否命題 | B. | 命題“若x>y,則x>|y|”的逆命題 | ||
C. | 命題“若x=1,則x2+x-2=0”的否命題 | D. | 命題“若x2≥1,則x≥1”的逆否命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com