【題目】如圖①,平行四邊形中,,,,為中點(diǎn).將沿折起,使平面平面,得到如圖②所示的四棱錐.
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析.(2)
【解析】
(1)在圖中連接,由平面幾何知識及勾股定理,可求得,在圖②中,平面平面,可得平面,由此得證;
(2)由題意,根據(jù)解三角形可得,,設(shè)點(diǎn)到平面的距離為,由等體積法,可求得點(diǎn)到平面的距離.
(1)證明:在圖中連接,由平面幾何知識,可求得,,
又,,
在圖②中,平面平面,且平面平面,
平面,
又平面,
平面平面.
(2)設(shè)為中點(diǎn),連接,如圖.
由已知可得為等邊三角形,,
平面平面,
平面,
,
在中,,,,
由余弦定理求得,
,
在中,,,
,
又,
設(shè)點(diǎn)到平面的距離為,
由,
得,
,
點(diǎn)到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的有( )
①用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型的擬合效果越好;
②若一組數(shù)據(jù)8,12,x,11,9的平均數(shù)是10,則其方差是2;
③回歸直線一定過樣本點(diǎn)的中心();
④若相關(guān)系數(shù),則兩個變量之間線性關(guān)系性強(qiáng).
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為( )
A. 300,B. 300,C. 60,D. 60,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓過定點(diǎn),且在軸上截得的弦的長為4.
(1)若動圓圓心的軌跡為曲線,求曲線的方程;
(2)在曲線的對稱軸上是否存在點(diǎn),使過點(diǎn)的直線與曲線的交點(diǎn)滿足為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),則下列結(jié)論中不正確的是( )
A.曲線存在對稱中心B.曲線存在對稱軸
C.函數(shù)的最大值為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、,、分別為的外心,重心,.
(1)求點(diǎn)的軌跡的方程;
(2)是否存在過的直線交曲線于,兩點(diǎn)且滿足,若存在求出的方程,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)的坐標(biāo)為,離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)、為橢圓上位于第一象限的兩個動點(diǎn),滿足,為的中點(diǎn),線段的垂直平分線分別交軸、軸于、兩點(diǎn).
(ⅰ)求證:為的中點(diǎn);
(ⅱ)若(為三角形的面積),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某口罩廠一年中各月份的收入、支出情況如圖所示(單位:萬元,下列說法中錯誤的是(注:月結(jié)余=月收入一月支出)( )
A.上半年的平均月收入為45萬元B.月收入的方差大于月支出的方差
C.月收入的中位數(shù)為70D.月結(jié)余的眾數(shù)為30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com