定義在R上的可導(dǎo)函數(shù)f(x),已知y=e f ′(x)的圖象如下圖所示,則y=f(x)的增區(qū)間是

 

A.(-∞,1)         B.(-∞,2)         C.(0,1)             D.(1,2)

 

【答案】

B

【解析】

試題分析:若f(x)≥0,則e f ′(x)≥ e0=1,由圖知當(dāng)x<2時(shí),e f ′(x)≥ 1,所以y=f(x)的增區(qū)間是(-∞,2) 。

考點(diǎn):指數(shù)函數(shù)的圖像;指數(shù)函數(shù)的性質(zhì);利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。

點(diǎn)評(píng):要求函數(shù)y=f(x)的增區(qū)間,只需求f(x)>0的解集。因此根據(jù)y=e f ′(x)的圖像判斷f(x)>0的解集時(shí)解題的關(guān)鍵。屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、若函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)y=f(x)的極值點(diǎn)的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)y=f(x)在x=1處的切線方程是y=-x+2,則f(1)+f'(1)=( 。
A、-1
B、
1
2
C、2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-
1
2
)與f(
16
3
)的大小關(guān)系是( 。
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)、g(x)是定義在R上的可導(dǎo)函數(shù),且f(x)g(x)+f(x)g(x)<0,則當(dāng)a<x<b時(shí)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)對(duì)任意x∈R都有f(x)=f(-x),且當(dāng)x≠0時(shí),有x•f′(x)<0,現(xiàn)設(shè)a=f(-sin32°),b=f(cos32°),則實(shí)數(shù)a,b的大小關(guān)系是
a>b
a>b

查看答案和解析>>

同步練習(xí)冊(cè)答案