【題目】如圖所示,在四棱錐中, 平面的中點(diǎn), 上的點(diǎn)且上的高.

(1)證明: 平面

2)若,求三棱錐的體積;

3)在線段上是否存在這樣一點(diǎn),使得平面?若存在,說出點(diǎn)的位置.

【答案】(1)證明見解析;(2);(3中點(diǎn).

【解析】試題分析:1平面 邊上的高, ,由線面垂直的判定定理能夠證明平面;(2)連接中點(diǎn),連接中點(diǎn), , 平面, 平面,由根據(jù)棱錐的體積公式能夠求出三棱錐的體積;(3的中點(diǎn),連接,則因?yàn)?/span>的中點(diǎn),先證明再證明以平面,可得 重合時(shí)符合題意.

試題解析:(1,又平面,平面,

,平面

2的中點(diǎn),到平面的距離等于點(diǎn)到平面距離的一半,即=,又因?yàn)?/span>,所以三棱錐;

3)取的中點(diǎn),連接、,則因?yàn)?/span>的中點(diǎn),所以,且,又因?yàn)?/span>,所以,所以四邊形是平行四邊形,所以,由(1)知平面,所以,又因?yàn)?/span>,所以,因?yàn)?/span>,所以平面,因?yàn)?/span>ED//DQ,所以MPB中點(diǎn).

【方法點(diǎn)晴】本題主要考查線面垂直的判定定理及棱錐的體積公式,屬于難題.解答空間幾何體中垂直關(guān)系時(shí),一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時(shí)要正確運(yùn)用有關(guān)的定理,找出足夠的條件進(jìn)行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠最近十年生產(chǎn)總量逐年上升,如表是部分統(tǒng)計(jì)數(shù)據(jù):

年份

2008

2010

2012

2014

2016

生產(chǎn)總量(萬噸)

(Ⅰ)利用所給數(shù)據(jù)求年生產(chǎn)總量與年份之間的回歸直線方程;

(Ⅱ)利用(Ⅰ)中所求出的直線方程預(yù)測該廠2018年生產(chǎn)總量.

(回歸直線的方程: ,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)
(1)用a表示f(x)的最大值M(a);
(2)當(dāng)M(a)=2時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn).

(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某出租車公司響應(yīng)國家節(jié)能減排的號(hào)召,已陸續(xù)購買了140輛純電動(dòng)汽車作為運(yùn)營車輛,目前我國主流純電動(dòng)汽車按續(xù)航里程數(shù)單位:公里分為3類,即類:,類:, 類:,該公司對(duì)這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

類型

已行駛總里程不超過10萬公里的車輛數(shù)

10

40

30

已行駛總里程超過10萬公里的車輛數(shù)

20

20

20

(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;

(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類車中抽取了輛車.

的值;

如果從這輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 令Tn= ,稱Tn為數(shù)列a1 , a2 , …,an的“理想數(shù)”,已知數(shù)列a1 , a2 , …,a502的“理想數(shù)”為2012,那么數(shù)列2,a1 , a2 , …,a502的“理想數(shù)”為(
A.2010
B.2011
C.2012
D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2 , b13=a3
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)nbn+an , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示.

(1)求A,w及φ的值;
(2)若tana=2,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和定直線的距離之比為,設(shè)動(dòng)點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)過點(diǎn)作斜率不為0的任意一條直線與曲線交于兩點(diǎn),試問在軸上是否存在一點(diǎn)(與點(diǎn)不重合),使得,若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案