【題目】在四棱錐PABCD中,ABCD是矩形,PA=AB,EPB的中點(diǎn).

1)若過(guò)CD,E的平面交PA于點(diǎn)F,求證:FPA的中點(diǎn);

2)若平面PAB⊥平面PBC,求證:BCPA

【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析

【解析】

1)推導(dǎo)出,從而平面PAB,進(jìn)而CDEF,ABEF,再由EPB的中點(diǎn),能證明FPA的中點(diǎn);(2)推導(dǎo)出AEPB,從而AE⊥平面PBC,AEBC,由ABCD是矩形,得ABBC,從而BC⊥平面PAB,由此能證明BCPA

1)因?yàn)?/span>ABCD是矩形,

所以,CDAB,又AB平面PABCD平面PAB,

所以CD∥平面PAB

CD平面CDEF,平面CDEF∩平面PAB=EF,

所以CDEF,

所以ABEF,又在△PAB中,EPB的中點(diǎn),

所以FPA的中點(diǎn).

2)因?yàn)?/span>PA=ABEPB的中點(diǎn),所以AEPB

AE平面PAB又平面PAB⊥平面PBC,平面PAB∩平面PBC=PB,

所以AE⊥平面PBC,

BC平面PBC,所以AEBC,又ABCD是矩形,

所以ABBC,AEAB=A,AB,AE平面PAB

所以,BC⊥平面PAB,

PA平面PAB,所以BCPA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視廠(chǎng)家準(zhǔn)備在五一舉行促銷(xiāo)活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷(xiāo)售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬(wàn)元)和銷(xiāo)售量y(萬(wàn)臺(tái))的數(shù)據(jù)如下:

(1)若用線(xiàn)性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線(xiàn)性回歸方程(其中;參考方程:回歸直線(xiàn)

(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線(xiàn)性回歸模型和該模型的分別約為0.75和0.88,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更好;

(3)已知利潤(rùn)z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷(xiāo)售量及利潤(rùn)的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線(xiàn)的焦點(diǎn)做直線(xiàn)交拋物線(xiàn)于兩點(diǎn),的最小值為2.

(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

(2)過(guò),分別做拋物線(xiàn)的切線(xiàn),兩切線(xiàn)交于點(diǎn),且直線(xiàn)分別與軸交于點(diǎn),,記的面積分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿(mǎn)足。

(1)求證:A,B,C三點(diǎn)共線(xiàn);

(2)若A(1,cosx),B1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠(chǎng)有工人1000名,其中250名工人參加短期培訓(xùn)(稱(chēng)為類(lèi)工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱(chēng)為類(lèi)工人),從該工廠(chǎng)的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類(lèi)工人生產(chǎn)能力的莖葉圖(左圖),類(lèi)工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問(wèn)類(lèi)、類(lèi)工人各抽查了多少工人,并求出直方圖中的;

(2)求類(lèi)工人生產(chǎn)能力的中位數(shù),并估計(jì)類(lèi)工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表

短期培訓(xùn)

長(zhǎng)期培訓(xùn)

合計(jì)

能力優(yōu)秀

能力不優(yōu)秀

合計(jì)

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是棱長(zhǎng)為的正方體.

1)求證:平面平面;

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位: ) 組成一個(gè)樣本,且將纖維長(zhǎng)度超過(guò)315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長(zhǎng)度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);

(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;

(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案