【題目】下列說法中正確的是( )
A.若兩條直線互相平行,那么它們的斜率相等
B.方程能表示平面內的任何直線
C.圓的圓心為,半徑為
D.若直線不經過第二象限,則t的取值范圍是
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c.且滿足4cos2cos2(B+C).
(1)求角A;
(2)若△ABC的面積為,周長為8,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫(yī)院為促進行風建設,擬對醫(yī)院的服務質量進行量化考核,每個患者就醫(yī)后可以對醫(yī)院進行打分,最高分為100分.上個月該醫(yī)院對100名患者進行了回訪調查,將他們按所打分數分成以下幾組:第一組,第二組,第三組,第四組,第五組,得到頻率分布直方圖,如圖所示.
(1)求所打分數不低于60分的患者人數;
(2)該醫(yī)院在第二三組患者中按分層抽樣的方法抽取6名患者進行深入調查,之后將從這6人中隨機抽取2人聘為醫(yī)院行風監(jiān)督員,求行風監(jiān)督員來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數定義域為R,對于任意R恒有.
(1)若,求的值;
(2)若時,,求函數,的解析式及值域;
(3)若時,,求在區(qū)間,上的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2018·臨川一中]海盜船是一種繞水平軸往復擺動的游樂項目,因其外形仿照古代海盜船而得名.現(xiàn)有甲、乙兩游樂場統(tǒng)計了一天6個時間點參與海盜船游玩的游客數量,具體數據如表:
時間點 | 8點 | 10點 | 12點 | 14點 | 16點 | 18點 |
甲游樂場 | 10 | 3 | 12 | 6 | 12 | 20 |
乙游樂場 | 13 | 4 | 3 | 2 | 6 | 19 |
(1)從所給6個時間點中任選一個,求參與海盜船游玩的游客數量甲游樂場比乙游樂場少的概率;
(2)記甲、乙兩游樂場6個時間點參與海盜船游玩的游客數量分別為,(),現(xiàn)從該6個時間點中任取2個,求恰有1個時間點滿足的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐代詩人李欣的是古從軍行開頭兩句說“百日登山望烽火,黃昏飲馬傍交河”詩中隱含著一個有缺的數學故事“將軍飲馬”的問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標系中,設軍營所在區(qū)域為,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐的底面ABCD是邊長為a的菱形,面ABCD,,E,F分別是CD,PC的中點.
(1)求證:平面平面PAB;
(2)M是PB上的動點,EM與平面PAB所成的最大角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 底面, , ∥, , .
(1)求證:平面 平面;
(2)若棱上存在一點,使得二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】標號為0到9的10瓶礦泉水.
(1)從中取4瓶,恰有2瓶上的數字相鄰的取法有多少種?
(2)把10個空礦泉水瓶掛成如下4列的形式,作為射擊的靶子,規(guī)定每次只能射擊每列最下面的一個(射中后這個空瓶會掉到地下),把10個礦泉水瓶全部擊中有幾種不同的射擊方案?
(3)把擊中后的礦泉水瓶分送給A、B、C三名垃圾回收人員,每個瓶子1角錢.垃圾回收人員賣掉瓶子后有幾種不同的收入結果?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com