【題目】正三角形的邊長為,將它沿高折疊,使點與點間的距離為,則四面體外接球的表面積為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過原點,且在原點處的切線與直線垂直.(為自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)若對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其(且)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)已知曲線的極坐標(biāo)方程為,點是曲線與的交點,點是曲線與的交點,、均異于原點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線方程與,點在上運動,點在上運動,且線段的長為定值.
(Ⅰ)求線段的中點的軌跡方程;
(Ⅱ)設(shè)直線與點的軌跡相交于,兩點,為坐標(biāo)原點,若,求原點的直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義兩個函數(shù)的關(guān)系:函數(shù)的定義域分別為,若對任意的,總存在,使得,我們就稱函數(shù)為的“子函數(shù)”.已知函數(shù),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若為的一個“子函數(shù)”,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.
(1)求橢圓的方程;
(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com