【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)

1)求的值;

2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?

【答案】(1;(2)甲大棚萬元,乙大棚萬元時,總收益最大, 且最大收益為萬元.

【解析】試題分析:(1)由題意,把代入所給函數(shù)求出即可;(2)每年兩個大棚的總收益為,確定函數(shù)的定義域,利用二次函數(shù)圖象在閉區(qū)間上求最值即可.

試題解析:(1)因為甲大棚投入萬元,則乙大棚投入萬元,....................1

所以......................4

2

依題意得,故......8

,

,

當(dāng),即時,

所以投入甲大棚萬元,乙大棚萬元時,總收益最大,且最大收益為萬元...........12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分) 已知P32),一直線過點P,

若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

若直線x、y軸正半軸交于A、B兩點,當(dāng)面積為12時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

(1)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學(xué)歷為研究生的概率;

(2)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為8.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一勞動節(jié)放假,某商場進(jìn)行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個,分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機變量的概率分布和數(shù)學(xué)期望;

(3)求某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

1)命題、都是奇數(shù),則是偶數(shù)的否命題是、都不是奇數(shù),則不是偶數(shù)

2)命題如果,那么是真命題;

3的必要不充分條件.

那么其中正確的說法有( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),

1)若,且函數(shù)的值域為,求的解析式;

2)在(1)的條件下,當(dāng)時,時單調(diào)函數(shù),求實數(shù)的取值范圍;

3)當(dāng)時,若對于任意,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有兩個不同的實數(shù)根,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選)定義在R上的函數(shù)滿足,當(dāng)時,,則函數(shù)滿足(

A.B.是奇函數(shù)

C.上有最大值D.的解集為

查看答案和解析>>

同步練習(xí)冊答案