若函數(shù)f)=2cos2x+
3
sin2x+a(a∈R)
(1)求函數(shù)f(x)的周期及對稱軸方程;
(2)若函數(shù)f(x)在區(qū)間[0,
π
2
]上的最小值為5,求函數(shù)f(x)在[0,
π
2
]區(qū)間上的最大值.
考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)首先,化簡函數(shù)解析式,f(x)=2sin(2x+
π
6
)a+1+a,然后,確定該函數(shù)的周期和對稱軸方程;
(2)直接根據(jù)x∈[0,
π
2
],得到函數(shù)的值域,然后,借助于其最小值為5,從而確定a的取值,最后,求解該函數(shù)的最大值.
解答: 解:(1)∵函數(shù)f(x)=2cos2x+
3
sin2x+a(a∈R)
=1+cos2x+
3
sin2x+a
=2sin(2x+
π
6
)a+1+a
∴T=
2
=π,
∴函數(shù)f(x)的周期π,
令2x+
π
6
=
π
2
+kπ,k∈Z,
∴x=
π
6
+
1
2
kπ,
∴函數(shù)f(x)的對稱軸方程x=
π
6
+
1
2
kπ,k∈Z;
(2)∵x∈[0,
π
2
],
∴(2x+
π
6
)∈[
π
6
,
6
],
∴sin(2x+
π
6
)∈[-
1
2
,1],
∴f(x)∈[
1
2
+a,
3
2
+a],
1
2
+a=5,
∴a=
9
2

∴數(shù)f(x)在[0,
π
2
]區(qū)間上的最大值
3
2
+
9
2
=6.
點評:本題綜合考查了三角公式及其靈活運用,輔助角公式、三角函數(shù)的最值等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),短軸的一個端點為M,
△MF1F2為等邊三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(0,-2)的直線l與橢圓C相交于A,B兩點,在直線y=-
1
2
上是否存在點N,使得四邊形OANB為矩形?若存在,求出N點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是計算1+2+
1
2
+3+
1
3
+4+
1
4
+…+2012+
1
2012
的程序框圖.
(1)程序框圖中①應(yīng)填
 
,②應(yīng)填
 

(2)寫出程序框圖對應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四川省第十二屆運動會將于2014年8月18日在我市開幕.為了搞好接待工作,大會組委會在四川職業(yè)技術(shù)學(xué)院招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高(單位:cm)編成如下莖葉圖:

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有1人是“高個子”的概率是多少?
(2)若從身高180cm以上(包括180cm)的志愿者中選出男、女各一人,求這2人身高相差5cm以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀:已知a、b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,當(dāng)且僅當(dāng)
b
a
=
2a
b
,即a=
2
-1,b=2-
2
時取到等號,則y=
1
a
+
2
b
的最小值為3+2
2
.應(yīng)用上述解法,求解下列問題:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函數(shù)y=
1
x
+
8
1-2x
的最小值;
(3)已知正數(shù)a1、a2、a3,…,an,a1+a2+a3+…+an=1,求證:S=
a12
a1+a2
+
a22
a2+a3
+
a32
a3+a4
+…+
an2
an+a1
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx+cos2ωx,x∈R,ω>0.
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小正周期為
π
2
,則當(dāng)x∈[0,
π
2
]時,求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2
3
sinxcosx+3cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)已知f(a)=3,且α∈(0,
π
2
),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinx+2sin(
π
4
+
x
2
)cos(
π
4
+
x
2
).
(1)求f(x)在R上的單調(diào)遞增區(qū)間;
(2)若f(α)=
2
2
,α∈(-
π
2
,0),求α的值;
(3)若sin
x
2
=
4
5
,x∈(
π
2
,π),求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin2x,
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)若α為銳角,且f(
α
2
)=
3
4
,求sinα的值.

查看答案和解析>>

同步練習(xí)冊答案