如圖,正方形所在的平面與平面垂直,的交點(diǎn),,且
(1)求證:平面
(2)求二面角的大。

(1)詳見解析;(2).

解析試題分析:(1)要證AM⊥平面EBC,關(guān)鍵是尋找線線垂直,利用四邊形ACDE是正方形,可得AM⊥EC.利用平面ACDE⊥平面ABC,BC⊥AC,可得BC⊥平面EAC,從而有BC⊥AM.故可證;
(2)先求出二面角A-EB-C的平面角. 再在Rt△EAB中,利用AH⊥EB,有AE•AB=EB•AH.設(shè)EA=AC=BC=2a可得AB=2a,EB=2a,∴AH=.從而可求二面角A-EB-C的平面角 .
證明:(1)∵四邊形是正方形,
∵平面平面,又∵,平面. 
平面平面.    6分
(2)過(guò),連結(jié)

平面平面
是二面角的平面角. 
∵ 平面平面,平面

中, ,有
設(shè)可得
,
. 
∴二面角等于.                       12分.
考點(diǎn):1.用空間向量求直線與平面的夾角; 2.用空間向量求平面間的夾角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是平行四邊形,,,,設(shè)中點(diǎn),點(diǎn)在線段上且
(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱柱中,,,D、E分別是、的中點(diǎn),

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC的中點(diǎn).
(1)求證:PA//平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1.

(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ.
求證:l⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知為平行四邊形,,,點(diǎn)上,,相交于.現(xiàn)將四邊形沿折起,使點(diǎn)在平面上的射影恰在直線上.
(1)求證:平面
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知四棱錐P—GBCD中(如圖),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中點(diǎn),PG=4
(Ⅰ)求異面直線GE與PC所成角的余弦值;
(Ⅱ)若F點(diǎn)是棱PC上一點(diǎn),且,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中,側(cè)面為菱形, 且,的中點(diǎn).

(1)求證:平面平面;
(2)求證:∥平面

查看答案和解析>>

同步練習(xí)冊(cè)答案