16.函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{π}{6}$≤x≤$\frac{2}{3}$π)的最小值是( 。
A.1B.-$\sqrt{3}$C.-1D.-2

分析 由$\frac{π}{6}$≤x≤$\frac{2}{3}$π,可求得-$\frac{π}{6}$≤x-$\frac{π}{3}$≤$\frac{π}{3}$,由正弦函數(shù)的圖象可知:$\frac{1}{2}$≤cos(x-$\frac{π}{3}$)≤$\frac{\sqrt{3}}{2}$,即可求得y=2cos(x-$\frac{π}{3}$)的取值范圍,即可求得其最小值.

解答 解:由題意可知:$\frac{π}{6}$≤x≤$\frac{2}{3}$π,則-$\frac{π}{6}$≤x-$\frac{π}{3}$≤$\frac{π}{3}$,
∴$\frac{1}{2}$≤cos(x-$\frac{π}{3}$)≤$\frac{\sqrt{3}}{2}$,
∴1≤2cos(x-$\frac{π}{3}$)≤$\sqrt{3}$,
∴函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{π}{6}$≤x≤$\frac{2}{3}$π)的最小值1,
故選A.

點(diǎn)評(píng) 本題考查余弦函數(shù)圖象及性質(zhì),考查特殊角的三角函數(shù)值,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.隨著人們經(jīng)濟(jì)收入的不斷增長,購買家庭轎車已不再是一種時(shí)尚.隨著使用年限的增加,車的維修與保養(yǎng)的總費(fèi)用到底會(huì)增加多少一直是購車一族非常關(guān)心的問題.某汽車銷售公司做一次抽樣調(diào)查,得出車的使用年限x(單位:年)與維修與保養(yǎng)的總費(fèi)用y(單位:千元)的統(tǒng)計(jì)結(jié)果如表:
使用年限x23456
維修與保養(yǎng)的總費(fèi)用y23569
根據(jù)此表提供的數(shù)據(jù)可得回歸直線方程$\stackrel{∧}{y}$=1.7x+$\hat a$,據(jù)此估計(jì)使用年限為10年時(shí),該款車的維修與保養(yǎng)的總費(fèi)用大概是(  )
A.15200B.12500C.15300D.13500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正四棱錐S-ABCD的側(cè)棱長與底面邊長都等于2,點(diǎn)E是棱SB的中點(diǎn),則直線AE與直線SD所成的角的余弦值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},則(∁UM)∩N等于( 。
A.{0}B.{-1,-2}C.{-3,-4}D.{-1,-2,-3,-4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,求抽取的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右支上有一點(diǎn)A,它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,點(diǎn)F為雙曲線的右焦點(diǎn),設(shè)∠ABF=θ,θ∈[$\frac{π}{6}$,$\frac{π}{4}$)且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,則雙曲線離心率的最小值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x≥-1},則正確的是( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC的三個(gè)內(nèi)角為A,B,C,若函數(shù)f(x)=x2-xcosA•cosB-cos2$\frac{C}{2}$有一零點(diǎn)為1,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象作如下變換( 。
A.向右平移個(gè)單位$\frac{π}{3}$B.向右平移個(gè)單位$\frac{π}{6}$
C.向左平移個(gè)單位$\frac{π}{3}$D.向左平移個(gè)單位$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案