方程f(x)=x的根稱為f(x)的不動(dòng)點(diǎn),若函數(shù)f(x)=
x
a(x+2)
有唯一不動(dòng)點(diǎn),且x1=1000,xn+1=
1
f(
1
xn
)
(n∈N*),則x2013=( 。
A、2006B、2008
C、2012D、2013
考點(diǎn):函數(shù)的零點(diǎn)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:由題意,f(x)-x=
x
a(x+2)
-x=0有且只有一個(gè)解,從而解a;從而可得{xn}是以
1
2
為公差的等差數(shù)列,從而求解.
解答: 解:由題意,f(x)-x=
x
a(x+2)
-x=0有且只有一個(gè)解,
故a=
1
2

則xn+1=
1
f(
1
xn
)
=1÷
1
xn
1
2
(
1
xn
+2)
=
1+2xn
2
=
1
2
+xn;
故{xn}是以
1
2
為公差的等差數(shù)列,
故x2013=x1+(2012)×
1
2

=1000+1006=2006;
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的求法及等差數(shù)列的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若雙曲線的離心率為2,△AOB的面積為
3
,則該拋物線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(1,
3
2
),它的一個(gè)焦點(diǎn)是F(-1,0).
(1)求橢圓的方程;
(2)P,Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AP的傾斜角與AQ的傾斜角互補(bǔ),證明:直線PQ定向(即該直線的斜率為定值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線上右支上存在點(diǎn)P,使得右焦點(diǎn)F關(guān)于直線OP的對(duì)稱點(diǎn)在y軸上(O為坐標(biāo)原點(diǎn)),則雙曲線離心率的取值范圍為( 。
A、(
2
,
3
)
B、(
2
,+∞)
C、(1,
2
)
D、(
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AB為圓O的直徑,點(diǎn)E、F在圓上,AB∥EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1.
(Ⅰ)求證:BF⊥平面DAF;
(Ⅱ)求多面體ABCDFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)(3,
π
2
)到直線ρsin(θ-
π
4
)=2
2
的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-4(x≤1)
x2-2x-1(x>1)
則函數(shù)y=f(x)-log2x的零點(diǎn)的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
2
2
,其左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,y0)是圓x2+y2=
7
4
上一點(diǎn),且
PF1
PF2
=
3
4

(1)求橢圓C的方程;
(2)設(shè)不垂直x軸的直N線l:y=kx+m與橢圓C交于M,N兩點(diǎn),直線F2M與F2N傾斜角分別為α,β,且α+β=π.證明直線l過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x1,x2是函數(shù)f(x)=x2+mx-2(m∈R)的兩個(gè)零點(diǎn),且x1<x2,則x2-x1的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案