13.已知函數(shù)f(2x)=x•log32,則f(39)的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{9}$C.6D.9

分析 根據(jù)已知求出函數(shù)的解析式,將39代入計(jì)算可得答案.

解答 解:令t=2x,則x=log2t,
∵函數(shù)f(2x)=x•log32,
∴f(t)=log2t•log32=log3t,
∴f(39)=9,
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是對數(shù)的運(yùn)算性質(zhì),函數(shù)解析式的求法,函數(shù)求值,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)定義域?yàn)镽的奇函數(shù)$f(x)=\frac{1}{{{2^x}+a}}-\frac{1}{2}$(a為實(shí)數(shù)).
(Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k-$\frac{2}{x}$)+f(2-x)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={y|y=-x2+4},N={x|y=log2x},則M∩N=(  )
A.[4,+∞)B.(-∞,4]C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$cos(x-\frac{π}{4})=\frac{{\sqrt{2}}}{10},x∈(\frac{π}{2},\frac{3π}{4})$.
(1)求sinx的值;
(2)求$sin(2x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$f(x)=\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}\right.$,則f[f(1)]=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{x}^{2}+2x,x≤0}\end{array}\right.$,則f(f($\frac{1}{3}$))=-1,函數(shù)y=f(x)的零點(diǎn)是-2,1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點(diǎn),F(xiàn)為BE的中點(diǎn),且DE=1,EC=2,現(xiàn)將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.
(1)求證:平面ACE⊥平面BCE;
(2)能否在邊AB上找到一點(diǎn)P(端點(diǎn)除外)使平面ACE與平面PCF所成角的余弦值為$\frac{\sqrt{6}}{3}$?若存在,試確定點(diǎn)P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題:“?x>0,x2+x≥0”的否定形式是( 。
A.?x≤0,x2+x>0B.?x>0,x2+x≤0C.?x0>0,x02+x0<0D.?x0≤0,x02+x0>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果函數(shù)f(x)=lnx+ax2-2x有兩個(gè)不同的極值點(diǎn),那么實(shí)數(shù)a的范圍是$(0,\frac{1}{2})$.

查看答案和解析>>

同步練習(xí)冊答案