【題目】如圖所示,以原點為圓心的兩個同心圓,其中,大圓的半徑為 ,小圓的半徑為,點為大圓上一動點,連接,與小圓交于點,過點作軸的垂線,垂足為,過點作直線的垂線,垂足為,點,記.
(1)求點的坐標(用含有的式子表示),并寫出點的軌跡方程,指出點的軌跡是什么曲線;
(2)設(shè)點的軌跡為,點分別是曲線上的兩個動點,且,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù), .
(1)若,寫出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;
(2)若,求函數(shù)的最大值和最小值;
(3)若函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,三條邊所對的角分別為A、B,C,向量=(),=(),且滿足=.
(1)求角C的大;
(2)若sinA,sinC,sinB成等比數(shù)列,且 =﹣8,求邊的值并求△ABC外接圓的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.
(1)求橢圓C的方程;
(2)當MA,MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設(shè)游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(2)若函數(shù)在上無零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極點與直角坐標系的原點重合,極軸與軸的正半軸重合,圓的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,為直線與軸的交點,是圓上一動點,求的最大值;
(2)若直線被圓截得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實數(shù)的值;
(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;
(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com