精英家教網 > 高中數學 > 題目詳情
P是雙曲線x2-2y2=2上的一點,F1,F2分別是其左右焦點,若F1P⊥F2P,則△F1PF2的面積是
 
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:根據所給的雙曲線的方程,寫出雙曲線的實軸長和焦點之間的距離,設出要用的點到兩個焦點之間的距離,根據雙曲線的定義和勾股定理寫出m,n之間的關系,求出面積.
解答: 解:∵雙曲線x2-2y2=2,
∴a=
2
,b=1,c=
3

設PF1=m,PF2=n,
∵F1P⊥F2P,
∴m2+n2=12①
∵|m-n|=2
2
②,
把②平方,然后把①代入,得到mn=2,
∴△F1PF2的面積為
1
2
mn=1,
故答案為:1.
點評:本題考查雙曲線的定義,解題的關鍵是根據勾股定理和雙曲線的定義,得到表示面積的代數式的值,求出面積.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

公差不為零的等差數列的第1項、第6項、第21項恰好構成等比數列,則它的公比為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

直線ρ=
3
2cosθ+sinθ
與直線l關于直線θ=
π
4
(ρ∈R)對稱,則l的極坐標方程是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O為坐標原點,點P在區(qū)域
y≥|x-1|
y≤2-|x-1|
內運動,則滿足|OP|≤1的點P的概率是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x+y)=f(x)+f(y),x,y∈R,則f(x)是
 
函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x
ex
(x≥0)
x2+2x(x<0)
,若函數g(x)=f(x)+k有三個零點,則k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足f(x+6)=f(x),當-3≤x<-1時,f(x)=-(x+2)2;當-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2013)等于(  )
A、335B、337
C、1678D、2012

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,將平面直角坐標系的格點(橫、縱坐標均為整數的點)按如下規(guī)則標上數字標簽:原點處標0,點(1,0)處標1,點(1,-1)處標2,點(0,-1)處標3,點(-1,-1)處標4,點(-1,0)標5,點(-1,1)處標6,點(0,1)處標7,以此類推,則標簽2013×2014的格點的坐標為( 。
A、(-1007,1007)
B、(1007,1006)
C、(-1007,-1007)
D、(1006,-1007)

查看答案和解析>>

科目:高中數學 來源: 題型:

若x>1時,不等式x+
1
x-1
≥a恒成立,則實數a的最大值為( 。
A、2B、3C、4D、5

查看答案和解析>>

同步練習冊答案