【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗(yàn)員從這批產(chǎn)品中隨機(jī)抽取了100件作為樣本進(jìn)行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值.由檢測結(jié)果得到如下頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費(fèi)用為5元,每件不合格品的回收處理費(fèi)用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共件,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進(jìn)行回收處理,其余零件均按150元/件售出;方案二:繼續(xù)對剩余零件的重量進(jìn)行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質(zhì)品按200元/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.若隨機(jī)變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的必要不充分條件;
C.若隨機(jī)變量服從二項分布:,則;
D.已知直線經(jīng)過點(diǎn),則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為A、B,坐標(biāo)原點(diǎn)到直線AB的距離為,且.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)的直線交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,規(guī)定排放時污染物的殘留含量不得超過1%.已知在過濾過程中的污染物的殘留數(shù)量P(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關(guān)系為:(為正常數(shù),為原污染物數(shù)量).若前5個小時廢氣中的污染物被過濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過濾( )
A. 小時B. 小時C. 5小時D. 小時
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗(yàn)員從這批產(chǎn)品中隨機(jī)抽取了100件作為樣本進(jìn)行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值.由檢測結(jié)果得到如下頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費(fèi)用為5元,每件不合格品的回收處理費(fèi)用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共件,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進(jìn)行回收處理,其余零件均按150元/件售出;方案二:繼續(xù)對剩余零件的重量進(jìn)行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質(zhì)品按200元/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(),過原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)當(dāng)為正方形時,求該正方形的面積.
(2)若直線和關(guān)于軸對稱,上任意一點(diǎn)到和的距離分別為和,當(dāng)為定值時,求此時直線和的斜率及該定值.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時,求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點(diǎn).
(1)求三棱錐的體積;
(2)若異面直線與所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)長方體中,,,是的中點(diǎn),點(diǎn)在線段上.
(1)試在線段上確定點(diǎn)的位置,使得異面直線與所成角為,并請說明你的理由;
(2)在滿足(1)的條件下,求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com