【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗(yàn)員從這批產(chǎn)品中隨機(jī)抽取了100件作為樣本進(jìn)行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值.由檢測結(jié)果得到如下頻率分布直方圖.

分組

頻數(shù)

頻率

8

16

0.16

4

0.04

合計

100

1

1)求圖中的值;

2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費(fèi)用為5元,每件不合格品的回收處理費(fèi)用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進(jìn)行回收處理,其余零件均按150/件售出;方案二:繼續(xù)對剩余零件的重量進(jìn)行逐一檢測,回收處理所有不合格品,合格品按150/件售出,優(yōu)質(zhì)品按200/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.

【答案】1;(2)當(dāng)時,選方案一;當(dāng)時,選方案二.

【解析】

1)根據(jù)題中數(shù)據(jù),得到,根據(jù)頻率之和為,進(jìn)而可求出結(jié)果;

2)根據(jù)題中條件,得到兩種方案下的總收入,比較兩收入的大小,即可得出結(jié)果.

1)根據(jù)題中數(shù)據(jù)可得:,

又頻率之和為,

;

2)該工廠若選方案一:可收入元;

若選方案二:一件產(chǎn)品的平均收入為元,

故總收入元;

,

故當(dāng)時,選方案一;

當(dāng)時,選方案二.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,,則;

B.已知直線平面,直線平面,則的必要不充分條件;

C.若隨機(jī)變量服從二項分布:,則;

D.已知直線經(jīng)過點(diǎn),則的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為AB,坐標(biāo)原點(diǎn)到直線AB的距離為,且.

1)求橢圓C的方程;

2)過橢圓C的左焦點(diǎn)的直線交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,規(guī)定排放時污染物的殘留含量不得超過1%.已知在過濾過程中的污染物的殘留數(shù)量P(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關(guān)系為:為正常數(shù),為原污染物數(shù)量).若前5個小時廢氣中的污染物被過濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過濾(

A. 小時B. 小時C. 5小時D. 小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗(yàn)員從這批產(chǎn)品中隨機(jī)抽取了100件作為樣本進(jìn)行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值.由檢測結(jié)果得到如下頻率分布直方圖.

分組

頻數(shù)

頻率

8

16

0.16

4

0.04

合計

100

1

1)求圖中的值;

2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費(fèi)用為5元,每件不合格品的回收處理費(fèi)用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進(jìn)行回收處理,其余零件均按150/件售出;方案二:繼續(xù)對剩余零件的重量進(jìn)行逐一檢測,回收處理所有不合格品,合格品按150/件售出,優(yōu)質(zhì)品按200/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),過原點(diǎn)的兩條直線分別與交于點(diǎn)、、,得到平行四邊形.

1)當(dāng)為正方形時,求該正方形的面積.

2)若直線關(guān)于軸對稱,上任意一點(diǎn)的距離分別為,當(dāng)為定值時,求此時直線的斜率及該定值.

3)當(dāng)為菱形,且圓內(nèi)切于菱形時,求,滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,分別是的中點(diǎn).

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)長方體中,,的中點(diǎn),點(diǎn)在線段.

1)試在線段上確定點(diǎn)的位置,使得異面直線所成角為,并請說明你的理由;

2)在滿足(1)的條件下,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案