3.已知集合E={x||x-1|≥m},F(xiàn)=$\{x|\frac{10}{x+6}>1\}$.
(1)若m=3,求E∩F;
(2)若E∩F=∅,求實(shí)數(shù)m的取值范圍.

分析 (1)m=3時(shí)求出集合E,化簡(jiǎn)集合F,計(jì)算E∩F即可;
(2)由E∩F=∅,得出關(guān)于m的不等式組,從而求出m的取值范圍.

解答 解:(1)由|x-1|≥3,得 x-1≥3或x-1≤-3,
解得x≥4或x≤-2,
所以 E=(-∞,-2]∪[4,+∞);
由$\frac{10}{x+6}$-1>0,得$\frac{10-x-6}{x+6}$>0;
即(x-4)(x+6)<0,
解得-6<x<4;
所以F=(-6,4);
所以E∩F=(-6,-2];
(2)E∩F=∅,
則有m>0,E=(-∞,1-m]∪[1+m,+∞),
即$\left\{{\begin{array}{l}{1-m≤-6}\\{1+m≥4}\end{array}}\right.$,
解得$\left\{\begin{array}{l}{m≥7}\\{m≥3}\end{array}\right.$,
所以實(shí)數(shù)m的取值范圍是m≥7.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且$cosBcosC-sinBsinC=-\frac{1}{2}$.
(1)求A的值.            
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線$\sqrt{3}$x+3y+a=0的傾斜角為(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=f(x)是函數(shù)y=3x的反函數(shù),則$f({\frac{1}{9}})$=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點(diǎn)P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,則△PAB的面積為(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|1≤x≤5},C={x|-a≤x≤a+3},若C∩A=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.65B.45C.55D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示的三棱柱ABE-DCF中,AB=AF,BE=EF=2.
(Ⅰ)證明:AE⊥BF;
(Ⅱ)若∠BEF=60°,AE=$\sqrt{2}$AB=2,求三棱柱ABE-DFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案