【題目】已知橢圓的短軸長為,離心率,其右焦點為.

1)求橢圓的方程;

2)過作夾角為的兩條直線分別交橢圓,求的取值范圍.

【答案】1;(2.

【解析】

1)由已知短軸長求出,離心率求出關系,結合,即可求解;

2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出斜率為,求出,得到關于的表達式,根據(jù)表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據(jù)弦長公式,求出,即可求出結論.

1)由,又由,

,故橢圓的方程為.

2)由(1)知,

①當直線的斜率都存在時,

由對稱性不妨設直線的方程為

,

,設,

,

由橢圓對稱性可設直線的斜率為

,

.

,則,

時,,當時,由,所以,

,且.

②當直線的斜率其中一條不存在時,

根據(jù)對稱性不妨設設直線的方程為斜率不存在,

,

此時.

若設的方程為,斜率不存在,

,

綜上可知的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】


某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300.表示經(jīng)銷一件該商品的利潤.

)求事件A購買該商品的3位顧客中,至少有1位采用1期付款的概率

P(A)

)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為數(shù)列的前項和,,,平面內三個不共線的向量,,滿足,若點,,在同一直線上,則______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的準線與軸交于點,過點作直線交拋物線于,兩點.

1)求直線的斜率的取值范圍;

2)若線段的垂直平分線交軸于,求證:;

3)若直線的斜率依次為,,,,線段的垂直平分線與軸的交點依次為,,,,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,平面平面是線段的中點,.

1)證明:平面.

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.

1)求拋物線的方程;

2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設的中點為,若、四點共圓,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,其前項中的奇數(shù)項的和與偶數(shù)項的和之差為.

1)請證明這一結論對任意等差數(shù)列中各項均不為零)恒成立;

2)請類比等差數(shù)列的結論,對于各項均為正數(shù)的等比數(shù)列,提出猜想,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標方程;

(2)若點的坐標為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數(shù)學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續(xù)地作下去.若設操作次數(shù)為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.

查看答案和解析>>

同步練習冊答案