【題目】已知橢圓的短軸長為,離心率,其右焦點為.
(1)求橢圓的方程;
(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.
【答案】(1);(2).
【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;
(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據(jù)表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據(jù)弦長公式,求出,即可求出結論.
(1)由得,又由得,
則,故橢圓的方程為.
(2)由(1)知,
①當直線的斜率都存在時,
由對稱性不妨設直線的方程為,
由,
,設,
則,
則,
由橢圓對稱性可設直線的斜率為,
則,
.
令,則,
當時,,當時,由得,所以,
即,且.
②當直線的斜率其中一條不存在時,
根據(jù)對稱性不妨設設直線的方程為,斜率不存在,
則,,
此時.
若設的方程為,斜率不存在,
則,
綜上可知的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】
某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為
商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(Ⅰ)求事件A:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求的分布列及期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的準線與軸交于點,過點作直線交拋物線于,兩點.
(1)求直線的斜率的取值范圍;
(2)若線段的垂直平分線交軸于,求證:;
(3)若直線的斜率依次為,,,…,,…,線段的垂直平分線與軸的交點依次為,,,…,,…,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.
(1)求拋物線的方程;
(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設的中點為,若、、四點共圓,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列,其前項中的奇數(shù)項的和與偶數(shù)項的和之差為.
(1)請證明這一結論對任意等差數(shù)列(中各項均不為零)恒成立;
(2)請類比等差數(shù)列的結論,對于各項均為正數(shù)的等比數(shù)列,提出猜想,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的坐標為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數(shù)學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續(xù)地作下去.若設操作次數(shù)為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com