已知函數(shù)f(x)=sin(x-
π
3
)+
3
cosx,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,設(shè)內(nèi)角A,B,C所對的邊分別為a,b,c.若f(A)=
3
2
且a=
3
2
b,試求角B的大。
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象,正弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)將函數(shù)f(x)進(jìn)行化簡,利用三角函數(shù)的圖象和性質(zhì)即可求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)由f(A)=
3
2
求出A的大小,根據(jù)a=
3
2
b結(jié)合正弦定理即可求出B.
解答: 解:(1)f(x)=sin(x-
π
3
)+
3
cosx=
1
2
sinx+
3
2
cosx=sin(x+
π
3
),
則函數(shù)f(x)的最小正周期T=
2
,
由-
π
2
+2kπ≤x-
π
3
π
2
+2kπ,
解得-
π
6
+2kπ≤x≤
6
+2kπ,
即函數(shù)的單調(diào)遞增區(qū)間為[-
π
6
+2kπ,
6
+2kπ],k∈Z.
(2)∵若f(A)=
3
2
,
∴sin(A+
π
3
)=
3
2
,
∵0<A<π,則
π
3
<A+
π
3
3
,
∴A+
π
3
=
3
,解得A=
π
3
,
∵a=
3
2
b,
sinA
sinB
=
a
b
=
3
2
,即sinB=1,
則B=
π
2
點評:本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域、值域:
(1)y=
2-x2-1-
1
4
;
(2)y=log2(x2+2x+5);
(3)y=log 
1
3
(-x2+4x+5);
(4)y=
loga(-x2-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

廊坊市某所中學(xué)有一塊矩形空地,學(xué)校要在這塊空地上修建一個內(nèi)接四邊形的花壇(如圖所示),該花壇的四個頂點分別落在矩形的四條邊上,已知 A B=a(a>2),BC=2,且 A E=A H=CF=CG,設(shè) A E=x,花壇面積為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當(dāng) A E為何值時,花壇面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則輸出的結(jié)果S=( 。
A、11B、26C、57D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x,y滿足
|x-1|≤1
y≥0
y≤x+1
時,則t=x+y的最大值是(  )
A、1B、2C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序后,輸出的i的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓N的標(biāo)準(zhǔn)方程為(y-5)2+(y-6)2=a2(a>0),若點P(3,3)與Q(5,3)有一點在圓內(nèi),另一點在圓外,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2+2014x-2015>0的解集為( 。
A、{x|-2015<x<1}
B、{x|x>1或x<-2015}
C、{x|-1<x<2015}
D、{x|x<-1或x>2015}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且y=f(x)的圖象關(guān)于直線x=
1
3
對稱,則f(-
2
3
)=
 

查看答案和解析>>

同步練習(xí)冊答案