已知點(diǎn)(1,)是函數(shù))的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿(mǎn)足=+).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列{項(xiàng)和為.

(1), ;(2) 112.

解析試題分析:(1)根據(jù)已知條件先求出的表達(dá)式,這樣等比數(shù)列項(xiàng)和就清楚了,既然數(shù)列是等比數(shù)列,我們可以用特殊值來(lái)求出參數(shù)的值,從而求出,對(duì)數(shù)列,由前項(xiàng)和滿(mǎn)足,可變形為,即數(shù)列為等差數(shù)列,可以先求出,再求出.(2)關(guān)鍵是求出和,而數(shù)列{項(xiàng)和就可用裂項(xiàng)相消法求出,
是數(shù)列的公差}.
試題解析:(1), 
,,
 .
又?jǐn)?shù)列成等比數(shù)列, ,所以 ;
又公比,所以    ;      3分
 
,, ;
數(shù)列構(gòu)成一個(gè)首相為1公差為1的等差數(shù)列, ,
當(dāng),  ;
();      7分
(2)
;      12分
考點(diǎn):(1)①等比數(shù)列的定義;②由數(shù)列前項(xiàng)和求數(shù)列通項(xiàng);(2)裂項(xiàng)相消法求數(shù)列前項(xiàng)和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和
(2)記,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列具有性質(zhì):①為整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)同時(shí)滿(mǎn)足:
①不等式的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在,使得不等式成立.
數(shù)列的通項(xiàng)公式為.
(1)求函數(shù)的表達(dá)式; 
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng)為,公差為,且不等式的解集為
(I)求數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和,滿(mǎn)足:.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)若數(shù)列的滿(mǎn)足為數(shù)列的前項(xiàng)和,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為數(shù)列{}的前項(xiàng)和,已知,2,N
(Ⅰ)求,,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{}的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,已知, .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前n項(xiàng)和記為,已知,
證明:(1)數(shù)列是等比數(shù)列;
(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案