(8分)已知關(guān)于的一元二次不等式

(1)當(dāng)時(shí),求不等式的解集;  (4分)

(2)當(dāng)取什么值時(shí),關(guān)于的一元二次不等式對(duì)一切實(shí)數(shù)都成立?  (4分)

 

【答案】

(1);(2)時(shí),一元二次不等式對(duì)一切實(shí)數(shù)都成立。

【解析】本試題主要是考查了一元二次不等式的求解.

(1)當(dāng)a=1時(shí),方程的兩根為,那么結(jié)合二次函數(shù)圖像可知解集。

(2)一元二次不等式對(duì)一切實(shí)數(shù)都成立

,解得,得到參數(shù)a的范圍。

解:(1)當(dāng)時(shí),          

方程的兩根為,             ------------3分

由二次函數(shù)的圖象得

不等式的解集是          -----------5分

(2)一元二次不等式對(duì)一切實(shí)數(shù)都成立

,解得        --------------------------------------7分

時(shí),一元二次不等式對(duì)一切實(shí)數(shù)都成立。    ---8分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c均為實(shí)數(shù),則“b2-4ac≤0”是“關(guān)于x一元二次不等式ax2+bx+c>0的解集為∅”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒。當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率。(2)已知關(guān)于x的一元二次函數(shù)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)在區(qū)間[上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率.

(2)已知關(guān)于x的一元二次函數(shù)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)在區(qū)間[上是增函數(shù)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣州一模 題型:解答題

(1)在一個(gè)紅綠燈路口,紅燈、黃燈和綠燈的時(shí)間分別為30秒、5秒和40秒.當(dāng)你到達(dá)路口時(shí),求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∝)上是增函數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案