17.下列說法正確的是( 。
A.log0.56>log0.54B.90.9>270.48C.${2.5^0}<{\frac{1}{2}^{2.5}}$D.0.60.5>0.60.3

分析 利用對數(shù)、指數(shù)函數(shù)的單調(diào)性即可得出結(jié)論.

解答 解:A、函數(shù)y=log0.5x單調(diào)遞減,故不正確;
B、90.9=31.8,270.48=31.44,指數(shù)函數(shù)y=3x單調(diào)遞增,故正確;
C、左邊為1,右邊>1,故不正確;
D、函數(shù)y=0.6x單調(diào)遞減,故不正確,
故選B.

點(diǎn)評 本題考查對數(shù)、指數(shù)函數(shù)的單調(diào)性的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)n∈N*,f(n)=3n+7n-2.
(1)求f(1),f(2),f(3)的值;
(2)證明:對任意正整數(shù)n,f(n)是8的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.y=$\frac{{x}^{2}+4}{x}$(1≤x≤3)的值域?yàn)閇4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知偶函數(shù)f(x)的定義域?yàn)镽,且f(1+x)=f(1-x),又當(dāng)x∈[0,1]時(shí),f(x)=x,函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{4}x(x>0)}\\{{4}^{x}(x≤0)}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,4]上的零點(diǎn)個(gè)數(shù)為(  )
A.8B.6C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖①,已知ABCD為平行四邊形,∠A=60°,AF=2FB,AB=6,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD交EF于點(diǎn)N,現(xiàn)將四邊形ADEF沿EF折起,使點(diǎn)D在平面BCEF上的射影恰在直線BC上(如圖②),則折后直線DN與直線BF所成角的余弦值為$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=$\left\{\begin{array}{l}{-2|2x-1|+1,x≥0}\\{-2|2x+1|+1,x<0}\end{array}\right.$和g(x)=x2-2|x|+m(m∈R),則下列命題錯(cuò)誤的是( 。
A.函數(shù)f(x)的圖象關(guān)于直線x=0對稱
B.關(guān)于x的方程f(x)-k=0恰有四個(gè)不相等實(shí)數(shù)根的充要條件是k∈(-1,1)
C.當(dāng)m=1時(shí),對?x1∈[-1,0],?x2∈[-1,0],f(x1)<g(x2)成立
D.若?x1∈[-1,1],?x2∈[-1,1],f(x1)<g(x2)成立,則m∈(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過橢圓$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}$=1的中心任作一直線交橢圓于P,Q兩點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則△PQF周長的最小值是( 。
A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)x,y∈R,并且2x+(3x-2y)i=3y-4-i,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若圓(x+3)2+(y+5)2=r2上有且僅有4個(gè)點(diǎn)到直線4x-3y+2=0的距離等于1,則該圓的半徑r的取值范圍是( 。
A.0<r<2B.0<r<1C.r>2D.1<r<2

查看答案和解析>>

同步練習(xí)冊答案