已知函數(shù)f(x)=
(a-1)x-1,x≤1
logax,x>1
,若f(x)在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍為______.
由于函數(shù)f(x)=
(a-1)x-1,x≤1
logax,x>1
,f(x)在(-∞,+∞)上單調(diào)遞增,
故有 a-1>0,且loga1≥(a-1)-1,即 0≥a-2.
綜合可得 1<a≤2,
故答案為 (1,2].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知是定義在上的函數(shù),且滿足下列條件:
①對任意的,;②當(dāng)時,.
(1)證明是定義在上的減函數(shù);
(2)如果對任意實數(shù),有恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=
(
1
2
)x,x≤1
log2x-1,x>1.
,則f(-2)=( 。
A.1B.
1
4
C.-3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a>0且a≠1,若函數(shù)f(x)=loga(ax2-x)在區(qū)間[
1
2
,6]
上是增函數(shù),則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=
x+1
x-1
(x≠±1)
,則下列各式成立的是( 。
A.f(x)+f(-x)=0B.f(x)•f(-x)=-1C.f(x)+f(-x)=1D.f(x)•f(-x)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=3-|x|,g(x)=x2-4x+3,構(gòu)造函數(shù)F(x),定義如下:當(dāng)f(x)≥g(x)時,F(xiàn)(x)=g(x);當(dāng)f(x)<g(x)時,F(xiàn)(x)=f(x),則F(x)在[-3,3]( 。
A.有最大值3,最小值-1
B.有最大值7-2
7
,無最小值
C.有最大值3,無最小值
D.無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=
x+3,x≤-1
x2,-1<x<2
3x,x≥2
,若f(x)=3,則x的值是(  )
A.0B.0或
3
2
C.±
3
D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=2x+2,則f(1)的值為(  )
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案