如圖所示,一種醫(yī)用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內(nèi)液體忽略不計.
(1)如果瓶內(nèi)的藥液恰好分鐘滴完,問每分鐘應(yīng)滴下多少滴?
(2)在條件(1)下,設(shè)輸液開始后(單位:分鐘),瓶內(nèi)液面與進氣管的距離為(單位:厘米),已知當時,.試將表示為的函數(shù).(注:)
(1);(2);
解析試題分析:(1)本小題主要通過題中給出圖形與數(shù)據(jù)求得瓶內(nèi)液體的體積(兩個圓柱體的體積和),再計算滴球狀液體的體積,然后利用二者相等,求得;
(2)本小題任然根據(jù)滴管內(nèi)勻速滴下球狀液體體積等于瓶內(nèi)液體下降的體積,只是需要注意瓶內(nèi)液體應(yīng)區(qū)分兩個圓柱體體積的不同,所以所得為分段函數(shù)。
試題解析:(1)設(shè)每分鐘滴下()滴, 1分
則瓶內(nèi)液體的體積 3分
滴球狀液體的體積 5分
所以,解得,故每分鐘應(yīng)滴下滴。 6分
(2)由(1)知,每分鐘滴下藥液 7分
當時,,即,此時 10分
當時,,即,此時 13分
綜上可得 14分
考點:1.幾何體體積的計算;2.分段函數(shù).
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在點(0,f(0))處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若∈[1,1],使得(e是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,當時,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當時,,求在上的反函數(shù);
(3)若關(guān)于的不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米的平均開發(fā)費用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度x的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀察點的車輛數(shù),單位:輛/每小時)可以達到最大,并求出最大值(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),點、在函數(shù)的圖象上,
點在函數(shù)的圖象上,設(shè).
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和為;
(3)已知,記數(shù)列的前項和為,數(shù)列的前項和為,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若(0<x≤1),求x∈[-5,-4]時,函數(shù)f(x)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com