分析 (1)當(dāng)x=1時(shí),f(1)=0,所以P(1,0),分別代入f′(x),g(x)求得a,b;
(2)由(1)可得f(x)與g(x)的解析式,對(duì)f(x)求導(dǎo),進(jìn)而分x∈(0,1)時(shí),x∈(1,+∞)時(shí),分別討論f(x),g(x)的正負(fù),得出h(x)<0.
解答 解:(1)根據(jù)題意,函數(shù)f(x)=alnx-x+$\frac{1}{x}$,恒過(guò)定點(diǎn)(1,0),
故P的坐標(biāo)為(1,0),則有g(shù)(1)=1+1-b=0,即b=2;
對(duì)于f(x)=alnx-x+$\frac{1}{x}$,其導(dǎo)數(shù)f′(x)=$\frac{a}{x}$-1-$\frac{1}{{x}^{2}}$,
又由p(1,0),即f′(1)=0,
解可得a=2;
(2)由(1)可得f(x)=2lnx-x+$\frac{1}{x}$,則f′(x)=$\frac{2}{x}$-1-$\frac{1}{{x}^{2}}$=-$\frac{(x-1)^{2}}{{x}^{2}}$,
g(x)=x2+x-2,
當(dāng)x∈(0,1)時(shí),f′(x)<0,f(x)在(0,1)上單調(diào)遞減,f(x)>f(1)=0,
易知g(x)<0,故h(x)<0.
當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)在(0,1)上單調(diào)遞減,f(x)<f(1)=0,
易知g(x)>0,故h(x)<0.
綜上所述,當(dāng)x>0且x≠1時(shí),h(x)<0.
點(diǎn)評(píng) 本題考查單調(diào)性與導(dǎo)數(shù)故選的應(yīng)用,函數(shù)與不等式的綜合,分類(lèi)討論的思想和能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4,-6,3 | B. | -4,6,3 | C. | -4,-6,3 | D. | 4,-6,-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}],k∈z$ | B. | $[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈z$ | ||
C. | $[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}],k∈z$ | D. | $[{kπ+\frac{π}{6},kπ+\frac{5π}{6}}],k∈z$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
省農(nóng)科站要檢測(cè)某品牌種子的發(fā)芽率,計(jì)劃采用隨機(jī)數(shù)表法從該品牌800粒種子中抽取60粒進(jìn)行檢測(cè),現(xiàn)將這800粒種子編號(hào)如下001,002,…,800,若從隨機(jī)數(shù)表第8行第7列的數(shù)7開(kāi)始向右讀,則所抽取的第4粒種子的編號(hào)是( ).(下表是隨機(jī)數(shù)表第7行至第9行)
A.105 B.507 C.071 D.717
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com