已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是( ).
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm |
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m |
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2 |
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmn |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
等差數(shù)列的公差,,前項和為,則對正整數(shù),下列四個結(jié)論中:
(1)成等差數(shù)列,也可能成等比數(shù)列;
(2)成等差數(shù)列,但不可能成等比數(shù)列;
(3)可能成等比數(shù)列,但不可能成等差數(shù)列;
(4)不可能成等比數(shù)列,也不可能成等差數(shù)列;
正確的是( )
A.(1)(3). | B.(1)(4). | C.(2)(3). | D.(2)(4). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)y=anx2(an≠0,n∈N*)的圖象在x=1處的切線斜率為2an-1+1(n≥2,n∈N*),且當(dāng)n=1時其圖象過點(diǎn)(2,8),則a7的值為( )
A. | B.7 | C.5 | D.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知首項為正數(shù)的等差數(shù)列{an}的前n項和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是( ).
A.1006 | B.1007 | C.2011 | D.2012 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是( )
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm |
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m |
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2 |
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmn |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com