已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為(-2,0),(2,0),并且經(jīng)過點(diǎn)數(shù)學(xué)公式,則它的標(biāo)準(zhǔn)方程為________.


分析:設(shè)出橢圓方程,利用橢圓的定義,求出a的值;根據(jù)橢圓中三個(gè)參數(shù)的關(guān)系求出b,代入橢圓方程即可
解答:設(shè)橢圓的方程為
∵橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為(-2,0),(2,0),并且經(jīng)過點(diǎn),
=

∵橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-2,0),(2,0),
∴c2=4
∴b2=a2-c2=6
∴橢圓的方程為
故答案為
點(diǎn)評(píng):求圓錐曲線的方程的問題,一般利用待定系數(shù)法;注意橢圓中三個(gè)參數(shù)的關(guān)系為b2=a2-c2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

寫出適合下列條件的曲線方程:
(1)已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0)并且經(jīng)過(
5
2
,-
3
2
)
求它的標(biāo)準(zhǔn)方程.
(2)已知雙曲線兩個(gè)焦點(diǎn)分別為F1(-5,0),F(xiàn)2(5,0),雙曲線上一點(diǎn)P到F1,F(xiàn)2距離差的絕對(duì)值等于6,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044

已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-3,0)、(3,0),橢圓經(jīng)過點(diǎn)(5,0),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程

(Ⅱ)試探究y軸上是否存在點(diǎn)(0, ),使得過點(diǎn)作直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足

(Ⅰ) 求橢圓及其“伴隨圓”的方程;

(Ⅱ) 過點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省淄博市高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)

已知橢圓的兩個(gè)焦點(diǎn),過且與坐標(biāo)軸不平行的直線與橢圓相交于M,N兩點(diǎn),如果的周長(zhǎng)等于8.

(I)求橢圓的方程;

(Ⅱ)若過點(diǎn)(1,0)的直線與橢圓交于不同兩點(diǎn)P、Q,試問在軸上是否存在定點(diǎn)E(,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案