19.已知|$\overrightarrow{a}$|=5,|$\overrightarrow$|=12,當(dāng)且僅當(dāng)m為何值時,向量$\overrightarrow{a}$+m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$互相垂直.

分析 首先由已知向量$\overrightarrow{a}$+m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$互相垂直得到($\overrightarrow{a}$+m$\overrightarrow$)•($\overrightarrow{a}$-m$\overrightarrow$)=0,展開,得到模長關(guān)系式,求出m.

解答 解:若向量$\overrightarrow{a}$+m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$互相垂直,則有($\overrightarrow{a}$+m$\overrightarrow$)•($\overrightarrow{a}$-m$\overrightarrow$)=0,
∴$\overrightarrow{a}$2-m2$\overrightarrow$2=0.
∵|$\overrightarrow{a}$|=5,|$\overrightarrow$|=12,
∴25-144m 2=0.
∴m=±$\frac{5}{12}$.
∴當(dāng)且僅當(dāng)m=±$\frac{5}{12}$時,向量$\overrightarrow{a}$+m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$互相垂直.

點評 本題考查了平面向量垂直,數(shù)量積為0的運用;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.$\sqrt{si{n}^{2}480°}$等于(  )
A.±$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知3sinα+4cosα=5.
(1)求tanα的值;
(2)求$cot(\frac{3π}{2}-α)•{sin^2}(\frac{3π}{2}+α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=6-12x+x3,
(Ⅰ)求在點P(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)計算法語句求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{100}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定點A(12,0),M為曲線$\left\{{\begin{array}{l}{x=6+2cosθ}\\{y=2sinθ}\end{array}}$上的動點.
(1)若點P滿足條件$\overrightarrow{AP}=2\overrightarrow{AM}$,試求動點P的軌跡C的方程;
(2)在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,若直線:ρcosθ+ρsinθ=a與曲線C相交于不同的E、F兩點,O為坐標(biāo)原點且$\overrightarrow{OE}•\overrightarrow{OF}$=12,求∠EOF的余弦值和實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,AB和AC分別是⊙O的弦和切線,A為切點,AD為∠BAC的平分線且交⊙O于D,BD的延長線與AC交于C,若AC=6,AD=5,則AB=7.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若輸入的數(shù)字是“68”,則下列程序運行后輸出的結(jié)果是86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若θ是第一象限角,tanθ=$\frac{3}{4}$,則sinθ等于( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習(xí)冊答案