分析 (Ⅰ)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f ( x )=2sin(2x+$\frac{π}{3}$),令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得函數(shù) f ( x) 圖象的對(duì)稱軸方程.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可求g ( x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),由x∈[$\frac{π}{3}$,2π],利用正弦函數(shù)的性質(zhì)可求值域.
解答 解:(Ⅰ)∵f ( x )=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+2sinxcosx
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x+sin2x
=$\sqrt{3}$cos2x+sin2x
=2sin(2x+$\frac{π}{3}$),
∴令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得函數(shù) f ( x) 圖象的對(duì)稱軸方程:x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 $\frac{π}{12}$個(gè)單位,可得函數(shù)解析式為:y=2sin[2(x-$\frac{π}{12}$)+$\frac{π}{3}$]=2sin(2x+$\frac{π}{6}$),
再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的 4 倍,縱坐標(biāo)不變,得到函數(shù) 解析式為:y=g ( x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),
∵x∈[$\frac{π}{3}$,2π],
∴$\frac{x}{2}$+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],可得:sin($\frac{x}{2}$+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴g ( x)=2sin($\frac{x}{2}$+$\frac{π}{6}$)∈[-1,2].
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 31 | B. | 32 | C. | 61 | D. | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 2 | 4 | 6 | 8 |
y | 3 | 4 | 6 | 7 |
A. | 4.625噸 | B. | 4.9375噸 | C. | 5噸 | D. | 5.25噸 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 72 | C. | C144 | D. | 288 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 72 | C. | 144 | D. | 288 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
Y X | y1 | y2 | 總計(jì) |
x1 | a | 10 | a+10 |
x2 | c | 30 | c+30 |
總計(jì) | 60 | 40 | 100 |
A. | a=45,c=15 | B. | a=40,c=20 | C. | a=35,c=25 | D. | a=30,c=30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com