(理)已知數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,滿足關(guān)系Sn=2an-2.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=,求證:對任意正整數(shù)n,總有Tn<2;

(3)在正數(shù)數(shù)列{cn}中,設(shè)(cn)n+1=an+1(n∈N*),求數(shù)列{lncn}中的最大項.

(文)已知數(shù)列{xn}滿足xn+1-xn=()n,n∈N*,且x1=1.設(shè)an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表達式;

(2)求T2n;

(3)若Qn=1(n∈N*),試比較9T2n與Qn的大小,并說明理由.

(理)(1)解:∵Sn=2an-2(n∈N*),                                               ①

∴Sn-1=2an-1-2(n≥2,n∈N*).                                               ② 

①-②,得an=2an-2an-1(n≥2,n∈N*).

∵an≠0,∴=2(n≥2,n∈N*),

即數(shù)列{an}是等比數(shù)列.                                                      

∵a1=S1,

∴a1=2a1-2,即a1=2.

∴an=2n(n∈N*).                                                          

(2)證明:∵對任意正整數(shù)n,總有bn=,                         

∴Tn=

=1+1<2.                                 

(3)解:由(cn)n+1=an+1(n∈N*),知lncn=.

令f(x)=,則f′(x)=.

∵在區(qū)間(0,e)上,f′(x)>0,在區(qū)間(e,+∞)上,f′(x)<0,

∴在區(qū)間(e,+∞)上f(x)為單調(diào)遞減函數(shù).                                         

∴n≥2且n∈N*時,{lncn}是遞減數(shù)列.

又lnc1<lnc2,∴數(shù)列{lncn}中的最大項為lnc2=ln3.                             

(文)解:(1)∵xn+1-xn=()n,

∴xn=x1+(x2-x1)+(x3-x2)+…+(xn-xn-1)

=1+()+()2+…+()n-1

=

=.                                                          

當n=1時上式也成立,

∴xn=(n∈N*).                                                

(2)an=.

∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n

=()2+2()3+3()4+…+(2n-1)()2n+2n()2n+1,                        ①

T2n=()3+2()4+3()5+…+(2n-1)()2n+1+2n()2n+2.              ②

①-②,得T2n=()2+()3+…+()2n+1-2n()2n+2.                       

T2n=-2n()2n+2

=.

∴T2n=.                             

(3)由(2)可得9T2n=.

又Qn=,

當n=1時,22n=4,(2n+1)2=9,∴9T2n<Qn;                                        

當n=2時,22n=16,(2n+1)2=25,∴9T2n<Qn;                                      

當n≥3時,22n=[(1+1)n2=()2>(2n+1)2,

∴9T2n>Qn.

綜上所述,當n=1,2時,9T2n<Qn;當n≥3時,9T2n>Qn.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理)已知數(shù)列{an}的前n項和Sn=3n-n2(n∈N*),則當n>2時有(    )

A.nan<Sn<na1        B.Sn<nan<na1        C.nan>Sn>na1       D.Sn>na1>nan

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知數(shù)列{an}的前n項和為Sn,且滿足a1=,an+2SnSn-1=0(n≥2),

(1)判斷{}是否為等差數(shù)列?并證明你的結(jié)論;

(2)求Sn和an;

(3)求證:S12+S22+…+Sn2.

(文)數(shù)列{an}的前n項和Sn(n∈N*),點(an,Sn)在直線y=2x-3n上.

(1)求證:數(shù)列{an+3}是等比數(shù)列;

(2)求數(shù)列{an}的通項公式;

(3)數(shù)列{an}中是否存在成等差數(shù)列的三項?若存在,求出一組適合條件的三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知數(shù)列{an}的前n項之和Sn與an滿足關(guān)系式:nSn+1=(n+2)Sn+an+2(n∈N+).

(1)若a1=0,求a2、a3的值;

(2)求證:a1=0是數(shù)列{an}為等差數(shù)列的充要條件.

(文)如圖,直線l:y=(x-2)和雙曲線C:=1(a>0,b>0)交于A、B兩點,且|AB|=,又l關(guān)于直線l1:y=x對稱的直線l2與x軸平行.

(1)求雙曲線C的離心率;

(2)求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知數(shù)列{an}中,a1=t(t≠0且t≠1),a2=t2,當x=t時,函數(shù)f(x)=(an-an-1)x2-(an+1-an)x(n≥2)取得極值.

(1)求證:數(shù)列{an+1-an}(n∈N*)是等比數(shù)列;

(2)記bn=anln|an|(n∈N*),當t=時,數(shù)列{bn}中是否存在最大項.若存在,是第幾項?若不存在,請說明理由.

(文)已知等比數(shù)列{xn}各項均為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0且a≠1),設(shè)y3=18,y6=12.

(1)求證:數(shù)列{yn}是等差數(shù)列;

(2)若存在自然數(shù)M,使得n>M時,xn>1恒成立,求M的最小值.

查看答案和解析>>

同步練習冊答案