已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線方程為,類比上述方法可以得到橢圓類似的性質(zhì)為________。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓的焦點(diǎn)是,,點(diǎn)在橢圓上且滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線與橢圓的交點(diǎn)為,.
(i)求使 的面積為的點(diǎn)的個數(shù);
(ii)設(shè)為橢圓上任一點(diǎn),為坐標(biāo)原點(diǎn),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右頂點(diǎn)分別為曲線是以橢圓中心為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線交于不同的兩點(diǎn)當(dāng)時,求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A,動點(diǎn)在雙曲線上運(yùn)動,且,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓右焦點(diǎn)重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下五個關(guān)于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點(diǎn);
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)A、B為兩個定點(diǎn),為常數(shù),若,則動點(diǎn)P的軌跡為雙曲線;
④過拋物線的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和
等于5的直線有且只有兩條。
⑤過定圓C上一點(diǎn)A作圓的動弦AB,O為原點(diǎn),若,則動點(diǎn)P的
軌跡為橢圓
其中真命題的序號為                (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓:上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為             (   )
A.4,8B.2,6C.6,8D.8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求下列標(biāo)準(zhǔn)方程(8分)
(1)橢圓的兩個焦點(diǎn)坐標(biāo)分別為(0,2),(0,-2),且點(diǎn)P,)在橢圓上.
(2)橢圓長軸是短軸的3倍,且過點(diǎn)A(4,0).
(3)雙曲線經(jīng)過點(diǎn)(-3,2),且一條漸近線為y=x
(4)雙曲線離心率為,且過點(diǎn)(4,).

查看答案和解析>>

同步練習(xí)冊答案