【題目】已知數(shù)列滿足,且.
(Ⅰ)求,的值;
(Ⅱ)是否存在實(shí)數(shù),,使得,對任意正整數(shù)恒成立?若存在,求出實(shí)數(shù)、的值并證明你的結(jié)論;若不存在,請說明理由.
【答案】(Ⅰ),;(Ⅱ)存在實(shí)數(shù),符合題意.
【解析】
(Ⅰ)由題意可整理為,從而代入,即可求,的值;
(Ⅱ)當(dāng)時和時,可得到一組、的值,于是假設(shè)該式成立,用數(shù)學(xué)歸納法證明即可.
(Ⅰ)因?yàn)?/span>,整理得,
由,代入得,.
(Ⅱ)假設(shè)存在實(shí)數(shù)、,使得對任意正整數(shù)恒成立.
當(dāng)時,,①
當(dāng)時,,②
由①②解得:,.
下面用數(shù)學(xué)歸納法證明:
存在實(shí)數(shù),,使對任意正整數(shù)恒成立.
(1)當(dāng)時,結(jié)論顯然成立.
(2)當(dāng)時,假設(shè)存在,,使得成立,
那么,當(dāng)時,
.
即當(dāng)時,存在,,使得成立.
由(1)(2)得:
存在實(shí)數(shù),,使對任意正整數(shù)恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形的三個頂點(diǎn)的坐標(biāo)分別為,,,則該三角形的重心(三邊中線交點(diǎn))的坐標(biāo)為.類比這個結(jié)論,連接四面體的一個頂點(diǎn)及其對面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點(diǎn),該點(diǎn)稱為四面體的重心.若四面體的四個頂點(diǎn)的空間坐標(biāo)分別為,,,,則該四面體的重心的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)奇函數(shù)f (x )的定義域?yàn)?/span>R , 且, 當(dāng)x時f (x)=, 則f (x )在區(qū)間上的表達(dá)式為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺,已知某外賣平臺的送餐費(fèi)用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)結(jié)果如下表:
以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)從這80名點(diǎn)外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;
(2)試估計(jì)利用該平臺點(diǎn)外賣用戶的平均送餐距離;
(3)若該外賣平臺給送餐員的送餐贄用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠(yuǎn)距離,每份9元,若送餐員一天的目標(biāo)收 人不低于150元,試估計(jì)一天至少要送多少份外賣?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有( )
A.12種B.24種C.36種D.48種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,點(diǎn)是線段上靠近點(diǎn)的一個三等分點(diǎn),點(diǎn)是線段上的一個動點(diǎn),且.如圖,將沿折起至,使得平面平面.
(1)當(dāng)時,求證:;
(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅(公元前5~6世紀(jì))是我國齊梁時代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設(shè)由橢圓 所圍成的平面圖形繞 軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京是我國嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:,,,,,加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)給出圖中實(shí)數(shù)a的值;
(2)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(3)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動車售后服務(wù)調(diào)研小組從汽車市場上隨機(jī)抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求續(xù)駛里程在的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com