若集合A={x|x≤6,x∈N},B={x|x是偶數(shù)},C=A∩B,則C的非空子集的個(gè)數(shù)為
 
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:本題的關(guān)鍵是理清集合A={x|x≤6,x∈N},B={x|x是偶數(shù)},C=A∩B,寫出集合B的元素,在根據(jù)交集寫出C的非空子集的個(gè)數(shù)
解答: 解:∵集合A={x|x≤6,x∈N},
∴A={0,1,2,3,4,5,6}
又∵B={x|x是偶數(shù)},
∴C=A∩B={0,2,4,6}
∴則C的非空子集的個(gè)數(shù)為:24-1=15個(gè)
故答案為:15
點(diǎn)評(píng):本題主要考查集合的相等等基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個(gè)集合間的關(guān)系,必須對(duì)集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x,g(x)為偶函數(shù),且當(dāng)x≥0時(shí),g(x)=x2-2x.記max{a,b}=
a,a≥b
b,a<b
.給出下列關(guān)于函數(shù)F(x)=max{f(x),g(x)}(x∈R)的說法:
①當(dāng)x≥3時(shí),F(xiàn)(x)=x2-2x;
②函數(shù)F(x)為奇函數(shù);
③函數(shù)F(x)在[-1,1]上為增函數(shù);
④函數(shù)F(x)的最小值為-1,無最大值.  
其中正確的是( 。
A、①②④B、①③④
C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊為a,b,c,角A為銳角,若
m
=(sin
A
2
,
6
3
),
n
=(cos
A
2
,-
3
3
)且
m
n

(1)求cosA的大;
(2)若a=1,b+c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角分別為A,B,C.
(1)若bcosA-acosB=0,且a=2,∠C=
π
4
,求c的值;
(2)若
a
=(cosA,sinB),
b
=(cosB,sinA),
a
b
=1
,試判斷三角形的形狀?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查,
得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) [30,40) [40,50) [50,60) [60,70) [70,80]
人數(shù) 5 25 30 25 15
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) [30,40) [40,50) [50,60) [60,70) [70,80)
人數(shù) 10 20 40 20 10
(Ⅰ)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時(shí)間與性別有關(guān)”?
(Ⅲ)從表3的男生中“上網(wǎng)時(shí)間少于60分鐘”和“上網(wǎng)時(shí)間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為5的樣本,再從中任取兩人,求至少有一人上網(wǎng)時(shí)間超過60分鐘的概率.
表3:
上網(wǎng)時(shí)間少于60分鐘 上網(wǎng)時(shí)間不少于60分鐘 合計(jì)
男生
女生
合計(jì)
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y>0,且x+2y=4,那么log2x+log2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,       x<0
x2+1,x≥0
,則等式f(1-x2)=f(2x)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}中a2=1,an+1-2an=n,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3x-2,x<2
log3(x2-1),x≥2
,若f(a)=1,則a的值是( 。
A、2B、1C、1或2D、1或-2

查看答案和解析>>

同步練習(xí)冊(cè)答案