4.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,則cosA+sinC的取值范圍為( 。
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

分析 由已知利用余弦定理可求cosB,結(jié)合B是銳角,可求B,進(jìn)而可得$C=\frac{5π}{6}-A$,利用三角函數(shù)恒等變換的應(yīng)用化簡可求cosA+sinC=$\sqrt{3}sin({A+\frac{π}{3}})$,由已知可求范圍$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<\frac{5π}{6}-A<\frac{π}{2}\end{array}\right.$,利用正弦函數(shù)的圖象和性質(zhì)即可計(jì)算得解.

解答 (本題滿分為12分)
解:由條件${a^2}+{c^2}-{b^2}=\sqrt{3}ac$,
根據(jù)余弦定理得:$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{\sqrt{3}}}{2}$,
∵B是銳角,
∴$B=\frac{π}{6}$.
∴$A+C=\frac{5π}{6}$,即$C=\frac{5π}{6}-A$,
∴cosA+sinC=cosA+sin($\frac{5π}{6}-A$)
=cosA+sin$\frac{5π}{6}$cosA-cos$\frac{5π}{6}$sinA
=$\frac{\sqrt{3}}{2}sinA+\frac{3}{2}cosA$
=$\sqrt{3}sin(A+\frac{π}{3})$,
又△ABC是銳角三角形,
∴$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<C<\frac{π}{2}\end{array}\right.$,即$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<\frac{5π}{6}-A<\frac{π}{2}\end{array}\right.$,
∴$\frac{π}{3}<A<\frac{π}{2}$,
∴$\frac{2π}{3}<A+\frac{π}{3}<\frac{5π}{6}$,
∴$cosA+sinC∈({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$.
故選:B.

點(diǎn)評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)y=2x2+lnx的二階導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:“?x∈[-1,2],x2-a<0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“p∨¬q”為假命題,則實(shí)數(shù)a的取值范圍為a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線C:y2=4x的焦點(diǎn)是F,過點(diǎn)F的直線與拋物線C相交于P、Q兩點(diǎn),且點(diǎn)Q在第一象限,若2$\overrightarrow{PF}$=$\overrightarrow{FQ}$,則直線PQ的斜率是( 。
A.$\frac{\sqrt{2}}{4}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在棱長為2的正方體OABC-O′A′B′C′中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn).
(1)當(dāng)AE=BF時(shí),求證A′F⊥C′E;
(2)若E,F(xiàn)分別為AB,BC的中點(diǎn),求直線O′B與平面B′EF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū) 5 戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入 x  (萬元)8.28.610.011.311.9
支出 y  (萬元)6.27.58.08.59.8
根據(jù)上表可得回歸直線方程 $\widehat{y}$=$\widehat$x+$\widehat{a}$,其中 $\widehat$=0.76,$\widehat{a}$=y-$\widehat$x,據(jù)此估計(jì),該社區(qū)一戶收入為 14 萬元家庭年支出為( 。
A.11.04 萬元B.11.08 萬元C.12.12 萬元D.12.02 萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin22.5°=0.3827,sin11.25°=0.1951,sin5.625°=0.0980)
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若(x3+$\frac{1}{\sqrt{x}}$)n的展開式中含有常數(shù)項(xiàng),且n的最小值為a,則${∫}_{-a}^{a}$$\sqrt{{a}^{2}-{x}^{2}}$dx=( 。
A.0B.$\frac{686}{3}$C.$\frac{49π}{2}$D.49π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)求函數(shù)f(x)的最大值;
(2)當(dāng)a≥0時(shí),討論函數(shù)h(x)=$\frac{1}{2}{x^2}$+a-axf(x)與函數(shù)g(x)的圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案