【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°,M是線段PD上的一點(diǎn)(不包括端點(diǎn)). (Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)求二面角D﹣PC﹣A的正切值;
(Ⅲ)試確定點(diǎn)M的位置,使直線MA與平面PCD所成角θ的正弦值為

【答案】解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC, ∵∠ACB=90°,
∴BC⊥AC,又PA∩AC=A,
∴BC⊥平面PAC.
(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,
∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE,
建立如圖所示空間直角坐標(biāo)系,
則A(0,,0,0),P(0,0, ),C( , ,0),D( ,﹣ ,0)

=(0,0, ), =( ,0), , ,
設(shè)平面PAC的一個(gè)法向量 ,則 ,
,∴
設(shè)平面PDC的一個(gè)法向量 ,則 ,
,∴ ,
設(shè)二面角D﹣PC﹣A的平面角為θ,
∴cosθ=|cos< >|=| |=| |= ,
故二面角D﹣PC﹣A的正切值為2.
(Ⅲ)設(shè)M(x,y,z), ,
則(x,y,z﹣ )=m( ),
解得點(diǎn)M( ),即 =( ),
由sinθ= ,得m=1(不合題意舍去)或m= ,
所以當(dāng)M為PD的中點(diǎn)時(shí),直線AM與平面PCD所成角的正弦值為
【解析】(Ⅰ)由PA⊥底面ABCD,BC平面AC,知PA⊥BC,由∠ACB=90°,知BC⊥AC,由此能夠證明BC⊥平面PAC.(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,故AE⊥AB,由PA⊥底面ABCD,知PA⊥AE,建立空間直角坐標(biāo)系,利用向量法能求出二面角D﹣PC﹣A的正切值.(Ⅲ)設(shè)M(x,y,z), ,則(x,y,z﹣ )=m( ),解得點(diǎn)M( ),由此能夠推導(dǎo)出當(dāng)M為PD的中點(diǎn)時(shí),直線AM與平面PCD所成角的正弦值為
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識(shí),掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想,以及對(duì)空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對(duì)穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對(duì)面打洞,已知第一天兩鼠都打了一尺長(zhǎng)的洞,以后大鼠每天打的洞長(zhǎng)是前一天的2倍,小鼠每天打的洞長(zhǎng)是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時(shí)各打了幾尺長(zhǎng)的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: + =1(a>b>0),離心率為 ,焦點(diǎn)F1(0,﹣c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點(diǎn),且△F2MN的周長(zhǎng)為4. (I) 求橢圓方程;
(II) 與y軸不重合的直線l與y軸交于點(diǎn)P(0,m)(m≠0),與橢圓C交于相異兩點(diǎn)A,B且 .若 =4 ,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.請(qǐng)你根據(jù)這一發(fā)現(xiàn),求:函數(shù) 對(duì)稱中心為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,Sn是前n項(xiàng)和,且S3=S8 , S7=Sk , 則k的值為(
A.4
B.11
C.2
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有四個(gè)函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖:
則按照從左到右圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是(
A.①④③②
B.③④②①
C.④①②③
D.①④②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2ex+blnx,且在P(1,f(1))處的切線方程為(3e﹣1)x﹣y+1﹣2e=0,g(x)=( ﹣1)ln(x﹣2)+ +1.
(1)求a,b的值;
(2)證明:f(x)的最小值與g(x)的最大值相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證: ≥3.

查看答案和解析>>

同步練習(xí)冊(cè)答案