設(shè)函數(shù)f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x),x∈R.

(1)若f(x)=1-且x∈[-,),求x;

(2)若函數(shù)y=2sin2x的圖象按向量c=(m,n)(|m|<)平移后得到函數(shù)y=f(x)的圖象,求實(shí)數(shù)m、n的值.

解:(1)依題意f(x)=2cos2x+sin2x=1+2sin(2x+).?

由1+2sin(2x+)=1-,得sin(2x+)=-.?

∵-≤x<,∴-≤2x+π.?∴2x+=-,∴x=-.

(2)∵a=(2cosx,1),b=(cosx, sin2x),

∴f(x)=a·b=(2cosx,1)·(cosx, sin2x)=2cos2x+sin2x=1+2sin(2x+).?

設(shè)P(x,y)為y=2sin2x圖象上任一點(diǎn),它在y=f(x)的圖象上對(duì)應(yīng)的點(diǎn)為P′(x′,y′).?

?∴代入y=2sin2x,得y′-n=2sin2(x′-m)=2sin(2x′-2m),?

即y′=2sin (2x′-2m)+n,而f(x)=2sin(2x+)+1.?

∴sin(2x-2m)=sin(2x+),n=1.?

∴sin(2x-2m)-sin(2x+)=0,n=1.?

∴ 2cos(2x-m+)sin(-m-)=0對(duì)所有x都成立?

∴sin(-m-)=0即m+=kπ(k∈Z)?

∴m=kπ- (k∈Z),又m<()?

∴m=-,n=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,2)

(1)求實(shí)數(shù)m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a-
22x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)若不等式f(x)+a>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
,an=f(n)
,若數(shù)列{an}是單調(diào)遞減數(shù)列,則實(shí)數(shù)a的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
2
,-2)
,
b
=(sin(
π
4
+2x),cos2x)
(x∈R).設(shè)函數(shù)f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(5
3
cosx,cosx)
,
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,設(shè)函數(shù)f(x)=
a
b
+|
b
|2+
3
2

(1)求函數(shù)f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案