5.已知i是虛數(shù)單位,復(fù)數(shù)z(1-i)=i2014,則z的共軛復(fù)數(shù)為(  )
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

分析 把已知等式變形,由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算結(jié)合虛數(shù)單位i的性質(zhì)化簡(jiǎn)得答案.

解答 解:∵z(1-i)=i2014,
∴$z=\frac{{i}^{2014}}{1-i}=\frac{-(1+i)}{(1-i)(1+i)}$=$-\frac{1}{2}-\frac{1}{2}i$,
則$\overline{z}=-\frac{1}{2}+\frac{1}{2}i$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了虛數(shù)單位i的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a5+b5=35,則a3+b3=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,∠BAC為伸入江中的半島,AB和AC為兩江岸,M處為水文站,N處為電訊局,現(xiàn)欲在兩江岸AB和AC上各建一個(gè)水文觀測(cè)點(diǎn)P、Q,現(xiàn)測(cè)得∠BAC=45°,當(dāng)直角坐標(biāo)系以點(diǎn)A為坐標(biāo)原點(diǎn)且以直線BA為x軸時(shí),測(cè)得M(-4,1)、N(-3,2).P、Q兩點(diǎn)應(yīng)建在何處才能使路程MPQN最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同的動(dòng)點(diǎn)(包括端點(diǎn)A1,C1).給出以下四個(gè)結(jié)論:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的個(gè)數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若對(duì)?x,y∈(0,+∞),不等式4xlna≤ex+y-2+ex-y-2+2恒成立,則正實(shí)數(shù)a的最大值是$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)水平放置的三角形的面積是$\frac{\sqrt{6}}{2}$,則其直觀圖面積為(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的兩個(gè)根;各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足b3=a3,S3=13.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{_{n},n>6}\end{array}\right.$,求數(shù)列的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$上求一點(diǎn)M,使點(diǎn)M到直線x+2y-10=0的距離最小,則點(diǎn)M的坐標(biāo)為$(\frac{9}{5},\frac{8}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=sin2x+2cos2x-1,有下列四個(gè)結(jié)論:
①函數(shù)f(x)在區(qū)間[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函數(shù);
②點(diǎn)($\frac{3π}{8}$,0)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心;
③函數(shù)f(x)的圖象可以由函數(shù)y=$\sqrt{2}$sin2x的圖象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],則f(x)的值域?yàn)閇0,$\sqrt{2}$].
則所有正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

同步練習(xí)冊(cè)答案