10.下列說法正確的是( 。
A.線性回歸模型y=bx+a+e是一次函數(shù)
B.在線性回歸模型y=bx+a+e中,因變量y是由自變量x唯一確定的
C.在殘差圖中,殘差點比較均勻地落在水平帶狀區(qū)域中,說明選用的模型比較合適
D.用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$來刻畫回歸方程,R2越小,擬合的效果越好

分析 由條件利用殘差、相關(guān)指數(shù)R2的意義、線性回歸模型的意義即可作出判斷.

解答 解:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,
根據(jù)線性回歸方程做出的y的值是一個預報值,不是由x唯一確定,故B不正確;
殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高,故C正確;
用相關(guān)指數(shù)R2可以刻畫回歸的效果,R2的值越大說明模型的擬合效果越好,故D不正確.
故選:C.

點評 本題考查回歸分析,本題解題的關(guān)鍵是理解對于擬合效果好壞的幾個量的大小反映的擬合效果的好壞,本題是一個中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)在定義域R內(nèi)可導,若f(x)=f(2-x),且(x-1)f′(x)>0,f(2)=0,則x•f(x)<0的解集為( 。
A.(0,2)B.(0,1)∪(2,+∞)C.(-∞,0)∪(0,2)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.i+2i2+3i3=-2-2i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法正確的是( 。
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”
C.命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.$\frac{1}{{1}^{2}+1}$+$\frac{1}{{2}^{2}+2}$+$\frac{1}{{3}^{2}+3}$+…+$\frac{1}{201{6}^{2}+2016}$=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中x=0是極值點的函數(shù)是( 。
A.f(x)=|x|B.f(x)=-x3C.f(x)=sinx-xD.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在討論函數(shù)局部性質(zhì)時,可以使用簡單的一次函數(shù)來替代復雜的原函數(shù),進而推導出正確的結(jié)論.在某值附近,用簡單的一次函數(shù),可以近似替代復雜的函數(shù),距離某值越近,近似的效果越好.比如,當|x|很小時,可以用y=x+1近似替代y=ex
(1)求證:x<0時,用x+1替代ex的誤差小于$\frac{1}{2}$x2,即:x<0時,|ex-x-1|<$\frac{1}{2}$x2;
(2)若x>0時,用x替代sinx的誤差小于ax3,求正數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某學校決定從高一(1)班60名學生中利用隨機數(shù)表法抽取10人進行調(diào)研,先將60名學生按01,02,…,60進行編號;如果從第8行第7列的數(shù)開始從左向右讀,則抽取到的第4個人的編號為(  )
(下面摘取了第7行到第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5026  8392 
6301 5316 5916 9275 3862  9821 5071 7512 8673 5807  4439 
1326    3321 1342 7864 1607      8252 0744 3815 0324    4299    7931.
A.16B.38C.21D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)令g(x)=f(x)-(ax-1),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習冊答案