6.已知命題p:x∈A,且A={x|a-1<x<a+1},命題q:x∈B,且B={x|y=lg(x2-3x+2)}.
(1)若A∪B=R,求實數(shù)a的取值范圍;
(2)若¬q是¬p的充分條件,求實數(shù)a的取值范圍.

分析 (1)利用并集列出不等式組,求解即可.
(2)p是q的充分條件,得到A⊆B,列出不等式求解即可.

解答 解:(1)由題意知,B={x|x2-3x+2>0}={x|x<1或x>2}
∵A∪B=R,且A={x|a-1<x<a+1},
∴$\left\{\begin{array}{l}a-1<1\\ a+1>2\end{array}\right.∴1<a<2$,
即所求實數(shù)a的取值范圍是(1,2).
(2)由(1)知,B={x|x<1或x>2},且A={x|a-1<x<a+1},
∵?q是?p的充分條件,∴p是q的充分條件,
∴A⊆B,∴a+1≤1或a-1≥2,∴a≤0或a≥3,
即所求實數(shù)a的取值范圍是{a|a≤0或a≥3}.

點評 本題考查命題的真假,充要條件的判斷與應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如圖的對應數(shù)據(jù):
x24568
y3030505070
(Ⅰ)畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程;
(Ⅲ)據(jù)此估計廣告費用為10萬元時,所得的銷售收入.
(參考數(shù)值:$\sum_{i=1}^5{{x_i}^2}=145$,$\sum_{i=1}^5{{x_i}{y_i}}=1270$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某高中男子體育小組的50m賽跑成績(單位:s)如下:
6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0
設計一個程序從這些成績中搜索出小于6.8s的成績.并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:平面ACD⊥平面ABD;
(2)若M為AD中點,AB=BD=1,三棱錐A-MBC的體積為$\frac{1}{12}$,求CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如表:
消費次第第1次第2次第3次第4次≥5次
收費比例10.950.900.850.80
該公司從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:
消費次第第1次第2次第3次第4次第5次
頻數(shù)60201055
假設汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出2人中恰有1人消費兩次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知p:方程x2+mx+1=0有兩個不等的正實數(shù)根,若¬p是真命題,則實數(shù)m的取值范圍為[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{ax}{{1+{x^2}}}$是定義在(-1,1)上的函數(shù),f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求a的值并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)證明函數(shù)f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.三個數(shù)a=$\sqrt{0.31}$,b=log20.31,c=20.31之間的大小關系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知{a,b,c}={0,1,2},且下列三個關系:a≠2,b=2,c≠0只有一個正確,則100c+10b+a=102.

查看答案和解析>>

同步練習冊答案