函數(shù)f(x)=(x-3)0+
|x2-1|
x+2
的定義域?yàn)?{x|x>-2且x≠3}.
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可得到函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則
x-3≠0
x+2>0
,
x≠3
x>-2
,
即x>-2且x≠3,
則函數(shù)的定義域?yàn)閧x|x>-2且x≠3}.
故答案為:{x|x>-2且x≠3}.
點(diǎn)評:本題主要考查函數(shù)定義域的求解,要求熟練掌握常見函數(shù)成立的條件,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)在x軸上,一條漸近線為y=
4
3
x,實(shí)軸長為12,
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)以雙曲線C的兩個頂點(diǎn)為焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線y=kx-2相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.
(3)求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,B=C,2b=
3
a.
(1)求cosA的值;   
(2)若a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(m-1)x2+(2m+1)x+1是偶函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,且a1≥1,a24≥24,S12≤168,則a9-d2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(
AB
+
MB
)+(
BO
+
BC
)+
OM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題的個數(shù)是
 

①若A∩B=∅,則A=∅或B=∅;
②命題P的否定就是P的否命題;
③A∪B=U(U為全集),則A=U,或B=U;
④A⊆B等價于A∩B=A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=2cosθ+2
y=2sinθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,則曲線C的極坐標(biāo)方程可寫為
 

查看答案和解析>>

同步練習(xí)冊答案